
Consiglio Nazionale delle Ricerche

An Experience in Ada Multicore Programming:
Parallelisation of a Model Checking Engine

Franco Mazzanti ISTI - CNR
Pisa, Italy

Formal Methods && Tools Laboratory

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” - Pisa

THE PROBLEM: How hard is it to exploit multicore parallelism?

• We would like to see how much gain can be obtained by the
exploitation of multicore features of the consumer-level
hardware / OS on which they run.

• We would like to “touch with hand” the difficulties
and the advantages, associated with the use of Ada,
in designing a parallel multicore system.

• We already have a family of model checkers, developed “in house”
- written in Ada, using a sequential, explicit, on the fly, verification

algorithm.

 How much redesign is needed, is it worth the effort?

 Which kind of support / facilities does Ada provide
for this kind of multicore programming?

THE OLD SOLUTION: The sequential (depth-first) evaluation

explored transitions not yet explored transitions

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approachThe sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approachThe sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

THE APPROACH: The sequential (depth-first) approach

explored transitions not yet explored transitions

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

AG P = false

AG P = true / in progress

node not yet explored

part not generated

AG P = false

AG P = true / in progress

node not yet explored

part not generated

The sequential (depth-first) approach

explored transitions not yet explored transitions

THE OLD SOLUTION:

Evaluation of the formula “AG P”: This state and all its successors satisfy P

THE OLD ALGORITHM:

Recursive, top down, on the fly, graph traversal
that makes use of two global structures

Configurations_DB Computations_DB

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

Expected gain: The evaluator task should proceed faster!

FIRST PROBLEMS: Parallel graph generation / sequential evaluation

• Concurrent operations over the shared
collections must be synchronised
using locks or semaphores,

• Shared data must be preserved with
Volatile and Atomic aspects

• Configurations_DB elements are constants

• Computations_DB elements are used by only one task.

FIRST PROBLEMS:

We know from the RM how to encode a Semaphore …

... so we can adjust our custom
containers to be thread-safe …

... and observe the results …

Synchronization over global collections

FIRST TESTS:

8 trains moving one-way through the yardModel with 1,636,535 states

Verification of absence of deadlocks caused by the ATS system

Deadlock avoidance in Automatic Train Supervision

Old Sequential Evaluation time Parallel Evaluation times (-O3)

E+W E+W+W E+W+W+WE
100 sec. 57 sec. (-O3)

FIRST TESTS:

8 trains moving one-way through the yardModel with 1,636,535 states

Verification of absence of deadlocks caused by the ATS system

Deadlock avoidance in Automatic Train Supervision

Old Sequential Evaluation time Parallel Evaluation times (-O3)

E+W
220 sec.

E+W+W
349 sec.

E+W+W+W
394 sec.

E
75 sec.100 sec. 57 sec. (-O3)

FIRST PROBLEMS: Synchronization over global collections

Protected objects Custom locks (spinlocks)

-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . M U L T I P R O C E S S O R S . S P I N _ L O C K S --
-- --
-- S p e c --
-- --
-- Copyright (C) 2010, AdaCore --

...
-- --
--

package Spin_Locks is
...
type Spin_Lock is limited record ... end record;
...
procedure Lock (Slock : in out Spin_Lock);
...
procedure Unlock (Slock : in out Spin_Lock);
...

end Spin_Locks;

E+W E+W+W E+W+W+WE

Old Sequential Evaluation time Parallel Evaluation times (-O3)

100 sec. 57 sec. (-O3)

FIRST PROBLEMS: Synchronization over global collections

Protected objects Custom locks (spinlocks)

-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . M U L T I P R O C E S S O R S . S P I N _ L O C K S --
-- --
-- S p e c --
-- --
-- Copyright (C) 2010, AdaCore --

...
-- --
--

package Spin_Locks is
...
type Spin_Lock is limited record ... end record;
...
procedure Lock (Slock : in out Sin_Lock);
...
procedure Unlock (Slock : in out Spin_Lock);
...

end Spin_Locks;

E+W
48 sec

E+W+W
45 sec.

E+W+W+W
50 sec.

E
72 sec.

Old Sequential Evaluation time Parallel Evaluation times (-O3)

100 sec. 57 sec. (-O3)

FIRST PROBLEMS: Limits

E+W
48 sec

E+W+W
45 sec.

E+W+W+W
50 sec.

E
72 sec.

Old Sequential Evaluation time Parallel Evaluation times (-O3)

100 sec. 57 sec. (-O3)

Once the state space has been fully
generated, no more benefits gained
from parallelism.

Even in absence of worker’s competition
volatile/atomic aspects undermine
the extent of sequential optimisations

More worker tasks we create, more
competion has the main evaluator task.

(and priorities and not a solution) State space generation may go much
further than what actually

needed

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Truly Parallel evaluationSECOND PARALLEL SOLUTION:

Expected gain: better exploitation of parallelism, better use of state-space

Truly Parallel evaluationMORE PROBEMS:

 Access to the global containers must be synchronized

Configurations_DB

 Access to the individual computation fragments must be protected!

Incomplete
Fragments

Work Pool

Computation_Fragments_DB

Protecting computation fragmentsMORE PROBEMS:

Protected Objects vs Spinlocks (again?)

protected type Fragment (...) is
function GetStatus ...;

procedure SetStatus (...);
procedure GetNextIncompleteSubFragment(...);

...
procedure Link(...);

...
procedure NotifyCompletionOfSubfrag(...);

...
private

...
end Fragment;

type Fragment (..) is tagged limited record
Lock: Lock_Ref := new Lock_Data with Volatile;
...

end record;

function GetStatus ...;
procedure SetStatus (...);
procedure GetNextIncompleteSubFragment(...);

...
procedure Link(...);

...
procedure NotifyCompletionOfSubfrag(...);

… := theFragment.GetStatus;
…

theFragment.SetStatus(…);
…

theFragment.GetNextIncompleteSubFragment(...);
…

theFragment.NotifyCompletionOfSubfrag(...);
…

MORE TESTS:

Old Sequential Evaluation time

Parallel Evaluation times (-O3)

E+E
37 sec.

E+E+E
29 sec.

E+E+E+E
28 sec.

Deadlock avoidance (again)

E
66 sec.

8 Trains moving one-way

Model with 1,636,535 states

using protected objects

E+E
36 sec.

E+E+E
27 sec.

E+E+E+E
24 sec.

E
65 sec.

using spinlocks

100 sec. 57 sec. (-O3)

MORE TESTS:

Old Sequential Evaluation time

Parallel Evaluation times (-O3)

Deadlock avoidance (again)

8 Trains moving two-way

Model with 8,878,643 states

E+E
265 sec.

E+E+E
207 sec.

E+E+E+E
189 sec.

E
437 sec.

600 sec. 371 sec. (-O3)

using protected objects

E+E
251 sec.

E+E+E
192 sec.

E+E+E+E
164 sec.

E
414 sec.

using spinlocks

MORE TESTS: Deadlock avoidance (again)

1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E
55.1 sec. 34.2 sec. 25.9 sec. 21.9 sec. 19.7 sec. 19.1 sec. 18.4 sec. 17.9 sec.

WHAT NEXT/ CONCLUSIONS: Further lines of work

• Parallelisation of model checking evaluation still in progress …

• Parallel Efficiency of Global Shared Containers can be improved …

• Parallel Workflow can be further optimised (parallel work pool) …

• More benefits expected … e.g from breadth first approach ...

WHAT NEXT/ CONCLUSIONS: Further lines of work

• Parallelisation of model checking evaluation still in progress …

• Parallel Efficiency of Global Shared Containers can be improved …

• Parallel Workflow can be further optimised (parallel work pool) …

• More benefits expected … e.g from breadth first approach ...

 Is the gain worth the effort?

WHAT NEXT/ CONCLUSIONS: Further lines of work

• Parallelisation of model checking evaluation still in progress …

• Parallel Efficiency of Global Shared Containers can be improved …

• Parallel Workflow can be further optimised (parallel work pool) …

• More benefits expected … e.g from breadth first approach ...

 Is the gain worth the effort?

 Does Ada provide good support for
parallel multicore programming?

WHAT NEXT/ CONCLUSIONS: Further lines of work

• Parallelisation of model checking evaluation still in progress …

• Parallel Efficiency of Global Shared Containers can be improved …

• Parallel Workflow can be further optimised (parallel work pool) …

• More benefits expected … e.g from breadth first approach ...

 Is the gain worth the effort?

 Does Ada provide good support for
parallel multicore programming?

WHAT NEXT/ CONCLUSIONS: Further lines of work

• Parallelisation of model checking evaluation still in progress …

• Parallel Efficiency of Global Shared Containers can be improved …

• Parallel Workflow can be further optimised (parallel work pool) …

• More benefits expected … e.g from breadth first approach ...

 Is the gain worth the effort?

 Does Ada provide good support for
parallel multicore programming?

WHAT NEXT: work still in progress

Thanks!

