



#### Affordable Safe & Secure Mobility Evolution

# **Overall project goals and structure**

L. RIOUX (THALES) DECPS – 17 June 2016 PISA, Italy

## **High Level Goals**



**ITEA3** 



Multi-Core technology fulfills the ever increasing demands of highly automated systems, but additionally raises new challenges concerning programming complexity and safety properties

ASSUME addresses these challenges by developing methods for

- efficient parallelisation of safety-relevant, performance-critical functionality
- improved traceability of safety-relevant functionality in the development process
- efficient verification of large systems

#### **Project Partners**





5 countries 39 partners 16 industrial partners 9 SMEs 14 research partners 224 PY





- new static analysis algorithms implemented in various tools
- synthesis of real-time parallel code with formal guarantees of functional and non-functional correctness,
- standards and APIs for incorporating meta-data,
- standards for static analysis tool interoperability,
- integrated into a Static Analysis Platform (SAP)

## **Quantified objectives**



- Increase performance (run-time) of analysis tools by 50%.
- Analyze single-core code with much higher precision, reducing spurious warnings by 60%
- Significant reduction of false positives in runtime-defect analysis of concurrent software
- Incorporate at least three new error classes (mainly for multi-core software) into analysis tools
- Reduce the effort for inspecting runtime errors by 40% in a typical industrial setting
- Build and demonstrate a complete software synthesis chain
- Methodologies will be potential candidates for standard extensions to relevant standardization bodies
- Build and demonstrate a fully certified compiler for a synchronous language
- Exchange format specification captures the results of 75% of the analysis tools
- Traceability of run-time errors back to the model level will be successful for at least 80%
- Witnesses can be generated will be generated for close to 100% of error classes
- Analysis on Simulink/Stateflow will be implemented for 60 % of the modeling language

#### **Partners along the Value Chain**



**Tier 2 Supplier** 

Koc Sistem, NXP, Verum

Technology vendors & Research

ENS, FZI, INRIA, KIT, KTH. Kiel Univ., Koc Univ., MDH, OFFIS, TNO, TUE, TUM, UT

Tier 1 Supplier

Arcelik, Bosch, Sagem, Thales

Vendor for development tools

absint, Arcticus, B&M, BTC, Esterel, MES, UNIT, Verum

**Original Equipment Manufacturer (OEM)** 

Airbus, Daimler, Arcelik, Ford Otosan, Ericsson, Scania, VDL, Havelsan

# **Management Structure**



| General Assembly (GA)                |     |     |     |                                |     |                              |                         |                      |         |                    |        |                            |     |  |     |
|--------------------------------------|-----|-----|-----|--------------------------------|-----|------------------------------|-------------------------|----------------------|---------|--------------------|--------|----------------------------|-----|--|-----|
| Technical Project Committee<br>(TPC) |     |     |     | Project<br>Coordinator<br>(PC) |     | Project Steering Board (PSB) |                         |                      |         |                    |        |                            |     |  |     |
| WP1                                  | WP2 | WP3 | WP4 | WP5                            | WP6 | Project<br>Mgmt<br>(PM)      | Quality<br>Mgmt<br>(QM) | Country Coordinators |         |                    | P      | Work<br>Package<br>Leaders |     |  |     |
|                                      |     |     |     |                                |     |                              |                         | France               | Germany | The<br>Netherland: | Sweden | Turkey                     | WP1 |  | WP6 |

# Roadmap



| Long<br>term  | Tool Interope<br>Static Analy   | •                                       | Methodology for safe and efficient systems evolution    |                                              |  |  |  |  |
|---------------|---------------------------------|-----------------------------------------|---------------------------------------------------------|----------------------------------------------|--|--|--|--|
| Mid<br>term   | "Zero Code Defect<br>softw      |                                         | Correct-by-<br>construction<br>parallel<br>applications | Static<br>Verification of<br>system concepts |  |  |  |  |
| Short<br>term | Next generation static analysis | Analysis of MC specific defects         | Formally verified compilers                             | Formal<br>Requirements                       |  |  |  |  |
|               | Single Core<br>Technology       | Multicore<br>Technology/<br>Concurrency | Synthesis of MC applications                            | Traceability                                 |  |  |  |  |

#### **Core Competencies**



 Requirement formalization
 Synthestis of concurrent software

 B&M, Bosch, BTC, ENS, Esterel, INRIA, OFFIS, Scania, TNO, UNIT
 Bosch, ENS, Esterel, INRIA, Koc, Univ, NXP, Thales, Kalray

 Integration
 absint, Arcticus, B&M, Bosch, BTC, Esterel, FZI, KIT, MDH, MES, UNIT

**Program Verification** 

absint, ENS, FZI, INRIA, KIT, Kiel Univ., Koc Univ., MES, OFFIS, Thales, TNO, TUM **Traceability Solutions** 

B&M, BTC, Esterel, KIT, Koc Univ., KTH, OFFIS, Scania

#### **Work Package Structure**



X I T E A 3 -

**Use Cases** 

### System Engineering Methodology

Scalable Zero Defect Analysis for Single Core Scalable Zero Defect Analysis for Multi Core Synthesis of Predictable Concurrent Systems

Dissemination, Exploitation and Standardisation

Management



**Use Cases** 



