

alTran 'L,

PRAXIS it

[SPARK]

SPARK Update - Ada Europe 2012

Stuart Matthews

Copyright © Altran Praxis

alTrRan '\
Contents <

PRAXIS it

* Background

e SPARK Pro - Product Update
e SPARK Book - New Edition
e SPARK Training

Copyright © Altran Praxis

atran L~

PRAXIS

Corporate

Overview

Essential OVERVIEW
Praxis

Altran Altran Praxis delivers engineering, technology and innovation for the world’s embedded and
critical systems

. Our expertise and focus is on embedded and critical systems, where there are demanding safety,
security and innovation requirements

. Our Engineering Services
* Systems, Software, Safety, Innovation, Security and training
. Our Markets
* All have embedded and critical requirements
. Our Accreditation
* 1S09001, and also market specific accreditations
. Our Offices
* Bath, Sophia Antipolis, Bangalore, London, Loughborough

arrany—

PRAXIS

- jresese

Corporate Markets Services Technology News Careers Home
Aerospace &
Defence
Rail
Nuclear Characteristics of Altran Praxis’ markets
Air Traffic . Novel ideas required

. Rely on Critical systems

. Safety and Security need to de demonstrated

. Legacy systems need to be taken beyond their life expectancy
. Global markets, requiring solutions that both work locally and can be

MARKETS

Management

Automotive
Medical
Security applied globally

Altran Praxis has a strong pedigree in all of these markets
. Trusted by manufacturers, suppliers, operators and regulators alike

attran -
SPARK Background =

e \What is SPARK?... SPARK - The SPADE Ada Kernel

. An Outline of the Language
- Programming language

by Bernard Carré and Trevor Jennings
Department of Electronics and Computer Science,

- StatIC VerIfICatIOn tOO|Set University of Southampton
°® H isto ry: CMarch 1987)

- 20+ years since first definition of language

- Southamption Uni, PVL, Praxis, Altran Praxis
- AdaCore - Altran Praxis Partnership

e SPARK Pro
: AdaCore aLTRan\-
- Language evolution

- IDE-integration
— Access via GNAT Tracker portal

Copyright © Altran Praxis

alTran 'L,

PRAXIS it

SPARK Pro - Product Update

Copyright © Altran Praxis

LTRan L
Recent Releases - 10.0 & 10.1 AT S

 Generics - Phase 1
 Examiner dynamic tables
* Automatic selection of flow analysis level

SPARKBridge and other improvements to proof tools
KCG Language Profile

Copyright © Altran Praxis Slide 8

_ alTran 'L,
Generics PRAXIS ™R

 Re-usable components that can be implemented
and analysed once, but instantiated many times

* Phase 1 - Generic Subprograms included in
Release 10.1 (Dec 2011)

 Provides access to Ada.Unchecked Conversion

* Phase 2 - Generic Packages - scheduled for
Release 11.0 (Q4 2012)

* Generics will support Ada Container Library
packages in future releases

Copyright © Altran Praxis Slide 9

arrany-
Generic Subprogram - Example e

e Library-level declaration:

generic
type Tl is range <>;
type T2 is range <>;
-—# check Tl ’ Last * Tl ’ Last <= T2 ' Last and
-—# T1 ' First * Tl '’ First <= T2 ' Last and
——# T1 ’ First * Tl '’ First >= T2 ' First ;

function Square (X : Tl) return T2;
——# return R => R = T2 (X * X);

Copyright © Altran Praxis Slide 10

alTrRan -
Generic Subprogram (cont.) Praxis =

 An example instantiation with stronger function
constraints:

type Actual Tl is range O .. 10;
type Actual T2 is range 0O .. Actual Tl’Last *
Actual T1'Last;

function My Square

-—# pre X > 1;

—-—# return R => R = T2 (X * X) and R >= 4;

1s new Square (Tl => Actual Tl , T2 => Actual T2);

Copyright © Altran Praxis Slide 11

alTrRan -
Generic Package - Example Phaxia ™

generic
type Tl is private;
package Stack
--# own State : Stack Type;
-—# initializes State;
is
--# type Stack Type is abstract;
-—# function Is Empty (S Stack Type) return Boolean;
procedure Pop (Item : out T1);
-—-# global in out State;

—-—-# derives Item, State from State;

--# pre not Is Empty (State);

end Stack;

Copyright © Altran Praxis Slide 12

alTRan L
Examiner Dynamic Tables i

 Flow analyser and VCG heaps are dynamic in
Release 10.1

* No more ‘megaspark’ or custom versions
 Faster Examiner start-up time

Copyright © Altran Praxis Slide 13

Auto-Selection of Flow Analsyis arRan -
Level
e New command-line option -flow=auto

e Examiner switches automatically between data
and information flow depending on presence of
derives annotation

* Allows mixed analysis in single run eg;:

- Information flow at lower levels
— Data flow only at higher levels

— Partitions with different integrity levels & different
flow analysis requirements

Copyright © Altran Praxis Slide 14

LTRan L
SPARKBridge & Proof Tools TR

o Simplifier tactics & efficiency continually
enhanced

» SPARKBridge now provides a gateway for the use
of alternative theorem provers
— Based on Victor from Edinburgh University

— Allows use of SAT solvers such as Alt-Ergo, CVC3,
Yices, Z3

* An open-source interface to Isabelle -
“SPARK/HOL” is also available

Copyright © Altran Praxis Slide 15

atTran\L-
KCG Language PrOf“e PRAXIS%}/

e Language profile suitable for use with SCADE’s
KCG code generator

* Enables parent package to access public child

* Allows data flow errors to be delegated to proof
system rather than Examiner (VC generation not
yet implemented)

e Future extensions:

- Auto-generate cut-points
- Strengthen default loop invariant
— Array slices

Copyright © Altran Praxis Slide 16

atTRan -
Release 11.0 PRAXIS ™

 Release 11.0 scheduled for early Q4 2012

 Major features:
— Generic Packages
- SPARKBridge fully supported
— Proof Functions
- #assume annotation
- Riposte (Beta release)

Copyright © Altran Praxis Slide 17

_ arran -
Proof Functions PRAXIS

e Proof functions can now be annotated with
preconditions and return annotations

* They can also be refined

* We expect this change to eliminate most
axiomatic Simplier user rules

* The Examiner now fully models function calls in all
proof contexts ie. VC generation takes account of
return annotation and pre-conditions

e Example ...

Copyright © Altran Praxis Slide 18

alTRanL-
Proof Function: Example e

-—# function Contains (V : Integer ;
-—# T : Tuple)
-—# return Boolean ;

-—# function Contains Both (A : Integer ;

——4 B : Integer ;
——# T : Tuple)
-—# return Boolean ;

--# pre A /= B;
-—# return Contains (A, T) and Contains (B, T);

* Refined in package body ...

--# function Contains (V : Integer ;

——# T : Tuple)

-—# return Boolean ;
-—# return T. First = V or T. Second = V;

Copyright © Altran Praxis Slide 19

: atTRan L
#assume Annotation PRAXIS ™
e Use to replace user rules or manual proof reviews

e |ike a check statement, except that there will be
no VCs generated to show that it is true.

e Example:

-—# accept W, 444 , "We increment the uptime counter once every
second .",
—-—# "The operational procedure requires that the system is",

-—# "rebooted at least once every 3 years - as the uptime ",
-—# "is stored in a signed 64 bit integer this means the ",
-—# "counter can never overflow in the lifetime of the system .";

——# assume (Clock .T’ Last = 2**63 - 1) -> (T < Clock .T’ Last);
T (=T + 1;
-—# end accept;

Copyright © Altran Praxis Slide 20

_ alrRan-
Riposte S
 Counter-example generation tool

 Result of a KTP project:
- Partnership with Bath University
- Part-funded by the Technology Strategy Board

* Improves productivity by distinguishing false VCs
from incomplete proofs

* Generates counter-examples (variable bindings)
for false VCs

Copyright © Altran Praxis Slide 21

Current SPARK Proof Workflow

Copyright © Altran Praxis

Find
bug

Change
code

Run
tools

Change
spec

alTtrRanL-

PRAXIS it

Verifies

©

Add

rlu

Slide 22

alTrRan 'L~

=

PRAXIS &

Future Workflow

Change
code

Run
tools

/

Run Verifies
/ Riposte ©
C/E] No C/E

Fix bug

Copyright © Altran Praxis

spec

rlu

Slide 23

arran-
Example 1 - Run Time Exceptions e

e Attempt to prove absence of run time exceptions
in the following function:

function Example 1 (X : in Integer) return Integer
-—# return abs (X);
is
begin
return abs (X);
end Example 1;

* Riposte finds the one case in which taking the
absolute value of a 2's complement integer gives
an overflow ...

Copyright © Altran Praxis Slide 24

Example 1 - Riposte output

alTtrRan,-

PRAXIS 7%

of line 30:)
H2: x >= integer first
H3: x <= integer last
>
C2: abs(x) <= integer last

This conclusion is false if:

x = integer first
*** VC function example
*** VC function example 1 2- PROVEN

*** Found a counter-example to function example 1 1, conclusion C2:
(For path(s) from start to run-time check associated with statement

1 - COUNTER EXAMPLE

**x* Found a counter-example
(For path(s) from start
of line 30:)
H2: x >= -2147483648
H3: x <= 2147483647
->
C2: abs(x) <= 2147483647

This conclusion is f e 1f:
x = —2147483648

*** VC function example 1 2 - PROVEN

‘riposte -n’ replaces
symbolic constants with
numbers

*** VC function example 1 1 - COUNTER EXAMPLE

Copyright © Altran Praxis

Slide 25

Example 2 - Functional
Correctness

alTtrRan,-

PRAXIS 7

type Rec T is record
A : Integer;
B : Integer;
C : Integer;

end record;

procedure Example 2 (R : in out Rec T)
-—-# derives R from R;
-—-# post R = R~[A => R~.C;
-—# C => R~.A]
--# and R /= R~;
Is

Tmp : Integer;
Begin

Tmp := R.A;

R.A := R.C;

R.C := Tmp;
end Example 2;

Copyright © Altran Praxis

Slide 26

alTRan -
Example 2 - Riposte output s

*** Found a counter-example to procedure example 2 4, conclusion C2:
(For path(s) from start to finish:)
H2: fld c(r) >= integer first

H3: fld c(r) <= integer last
H4: fld b(r) >= integer first
H5: fld b(r) <= integer last
H6: fld a(r) >= integer first
H7: fld a(r) <= integer last
->
C2: not upf c(upf a(r,fld c(r)),fld a(r)) =r

This conclusion is false if:
rec t'(

r

Il
\%

Q O W
[
VvV V
o O O

)
*** VC procedure example 2 4 - COUNTER EXAMPLE

Copyright © Altran Praxis

alTran'L-
Example 3 PRAXIS ™

* Riposte can show that the post condition in the
following function does not hold:

function Example 3 (A : in U64;
B : in U64)
return U64

-—# pre A > 17 and B > 19;

——# return X => X > 0;

is

begin

return 73 xor (A * B);
end Example 3;

* Riposte gives the following counter-example ...

Copyright © Altran Praxis Slide 28

alTRan L
Example 3 - Riposte output s

*** Found a counter-example to function example 3 1, conclusion Cl:
(For path(s) from start to finish:)

Hl: a > 17
H2: b > 19
H3: a >= 0
H4: a <= u64 last
H5: b >= 0
H6: b <= u64 last

—>
Cl: bit xor(73, (a * b) mod 2 ** 64) > 0
This conclusion is false if:

a = 15617650143032034577

b = 17670193526088673209
*** VC function example 3 1 - COUNTER EXAMPLE

Copyright © Altran Praxis

The proven approach to

HIGH INTEGRITY

STNSVE NHOIr

Copyright © Altran Praxis

SOFTWARE

JOHN BARNES

NEW BOOK
COMING SUMMER 2012

SPARK is a programming language and static verification technology
designed specifically for the development of high integrity software.
First designed over 20 years ago, SPARK has established a track
record of use in embedded and critical systems across a diverse range
of industrial domains where safety and security are paramount.

This third edition of the SPARK book is a major update which reflects
more recent additions to the SPARK language including tasking and
generics.

From basic principles through to the use of advanced proof
techniques, John Barnes provides both an informal introduction and a
reference guide for those wishing to develop high integrity software
using SPARK.

For more information please visit www.sparkada.com/book

arran,-
SPARK Training Programme e

* Primary Courses:
- Software Engineering with SPARK
- Advanced SPARK Program Design and Verification
* Advanced Courses:
- Secure Software Development with SPARK *New*
- Introduction to the Proof Checker
- Concurrent Software Design with RavenSPARK
e Special Courses:
- SPARK - Two Day Overview
- Refresh Your SPARK
* Tailored Courses

Copyright © Altran Praxis

Secure Software Development arRan -
with SPARK

* Audience: SPARK users who wish to learn how to
exploit the SPARK language and verification tools
in the development of high-security software.

* Prerequisites: Software Engineering with SPARK
course or fluency with the SPARK language and
the Examiner.

* Training Method: A one-day course (which can
follow Software Engineering with SPARK directly),
combining presentations, exercises and practical
work.

Copyright © Altran Praxis

alTran 'L,
Course Content PRAXIS ™

e Security basics - policy, threats, and value
e System versus Software Security
e Safety and Security Properties
 SPARK in the high-grade and MILS environments
e Verification of Security Properties in SPARK
- Ada language features supporting security
- Information flow
- Robustness and "crash proofing*
- Defence against buffer overflow and other undefined behaviour
- Validating inputs
— Error handling and the role of defensive programming
- Application-specific security properties
- Comparison with CWE, SANS “Top 25”7, ISO/SC22/WG23 PLV lists
e (Case study: the Tokeneer ID Station

Copyright © Altran Praxis

tTRaN -
SPARK Training Delivery aLTRANS~

e On-site training

 Public courses
— Altran Praxis, Bath
- September 2012

e www.altran-praxis.com/trainingSpark.aspx

Copyright © Altran Praxis

atTran\L-
Further Information s

 Ada Europe Tutorials - Friday AM & PM

— AM: The Benefits of Using SPARK for High-
assurance Software

- PM: The Use of Proof and Generics in SPARK

e The SPARK Book!

 Product information: www.adacore.com/sparkpro

Copyright © Altran Praxis

Altran Praxis Limited

20 Manvers Street

Bath BA1 1PX

United Kingdom

Telephone: +44 (0) 1225 466991
Facsimile: +44 (0) 1225 469006
Website: www.altran-praxis.com

Email: stuart.matthews@altran-praxis.com

Copyright © Altran Praxis

alTran L~

=

PRAXIS &

