

Copyright © Altran Praxis

SPARK Update – Ada Europe 2012

Stuart Matthews

[SPARK]

Copyright © Altran Praxis

Contents

• Background

• SPARK Pro – Product Update

• SPARK Book – New Edition

• SPARK Training

Corporate Markets Services Technology News Careers Home Corporate

Overview

Essential

Praxis

Altran

OVERVIEW

Altran Praxis delivers engineering, technology and innovation for the world‟s embedded and

critical systems

• Our expertise and focus is on embedded and critical systems, where there are demanding safety,

security and innovation requirements

• Our Engineering Services

• Systems, Software, Safety, Innovation, Security and training

• Our Markets

• All have embedded and critical requirements

• Our Accreditation

• ISO9001, and also market specific accreditations

• Our Offices

• Bath, Sophia Antipolis, Bangalore, London, Loughborough

Overview

Corporate Markets Services Technology News Careers Home Markets

Aerospace &

Defence

Rail

Nuclear

Air Traffic

Management

Automotive

Medical

Security

.

MARKETS

Characteristics of Altran Praxis‟ markets

• Novel ideas required

• Rely on Critical systems

• Safety and Security need to de demonstrated

• Legacy systems need to be taken beyond their life expectancy

• Global markets, requiring solutions that both work locally and can be

applied globally

Altran Praxis has a strong pedigree in all of these markets

• Trusted by manufacturers, suppliers, operators and regulators alike

SPARK Background

• What is SPARK?...

– Programming language

– Static verification toolset

• History:

– 20+ years since first definition of language

– Southamption Uni, PVL, Praxis, Altran Praxis

– AdaCore – Altran Praxis Partnership

• SPARK Pro

– Language evolution

– IDE-integration

– Access via GNAT Tracker portal

Copyright © Altran Praxis

SPARK Pro – Product Update

Copyright © Altran Praxis

Recent Releases – 10.0 & 10.1

• Generics – Phase 1

• Examiner dynamic tables

• Automatic selection of flow analysis level

• SPARKBridge and other improvements to proof tools

• KCG Language Profile

Copyright © Altran Praxis

Slide 8

Generics

• Re-usable components that can be implemented

and analysed once, but instantiated many times

• Phase 1 – Generic Subprograms included in

Release 10.1 (Dec 2011)

• Provides access to Ada.Unchecked_Conversion

• Phase 2 – Generic Packages – scheduled for

Release 11.0 (Q4 2012)

• Generics will support Ada Container Library

packages in future releases

Copyright © Altran Praxis

Slide 9

Generic Subprogram - Example

• Library-level declaration:

Copyright © Altran Praxis

generic

 type T1 is range <>;

 type T2 is range <>;

 --# check T1 ’ Last * T1 ’ Last <= T2 ’ Last and

 --# T1 ’ First * T1 ’ First <= T2 ’ Last and

 --# T1 ’ First * T1 ’ First >= T2 ’ First ;

function Square (X : T1) return T2;

--# return R => R = T2 (X * X);

Slide 10

Generic Subprogram (cont.)

• An example instantiation with stronger function

constraints:

Copyright © Altran Praxis

type Actual_T1 is range 0 .. 10;

type Actual_T2 is range 0 .. Actual_T1’Last *

 Actual_T1’Last;

function My_Square

--# pre X > 1;

--# return R => R = T2 (X * X) and R >= 4;

is new Square (T1 => Actual_T1 , T2 => Actual_T2);

Slide 11

Generic Package - Example

Copyright © Altran Praxis

generic

 type T1 is private;

package Stack

--# own State : Stack_Type;

--# initializes State;

is

 --# type Stack_Type is abstract;

 --# function Is_Empty (S : Stack_Type) return Boolean;

procedure Pop (Item : out T1);

--# global in out State;

--# derives Item, State from State;

--# pre not Is_Empty (State);

…

end Stack;

Slide 12

Examiner Dynamic Tables

• Flow analyser and VCG heaps are dynamic in

Release 10.1

• No more „megaspark‟ or custom versions

• Faster Examiner start-up time

Copyright © Altran Praxis

Slide 13

Auto-Selection of Flow Analsyis

Level

• New command-line option -flow=auto

• Examiner switches automatically between data

and information flow depending on presence of

derives annotation

• Allows mixed analysis in single run eg:

– Information flow at lower levels

– Data flow only at higher levels

– Partitions with different integrity levels & different

flow analysis requirements

Copyright © Altran Praxis

Slide 14

SPARKBridge & Proof Tools

• Simplifier tactics & efficiency continually

enhanced

• SPARKBridge now provides a gateway for the use

of alternative theorem provers

– Based on Victor from Edinburgh University

– Allows use of SAT solvers such as Alt-Ergo, CVC3,

Yices, Z3

• An open-source interface to Isabelle –

“SPARK/HOL” is also available

Copyright © Altran Praxis

Slide 15

KCG Language Profile

• Language profile suitable for use with SCADE‟s

KCG code generator

• Enables parent package to access public child

• Allows data flow errors to be delegated to proof

system rather than Examiner (VC generation not

yet implemented)

• Future extensions:

– Auto-generate cut-points

– Strengthen default loop invariant

– Array slices

Copyright © Altran Praxis

Slide 16

Release 11.0

• Release 11.0 scheduled for early Q4 2012

• Major features:

– Generic Packages

– SPARKBridge fully supported

– Proof Functions

– #assume annotation

– Riposte (Beta release)

Copyright © Altran Praxis

Slide 17

Proof Functions

• Proof functions can now be annotated with

preconditions and return annotations

• They can also be refined

• We expect this change to eliminate most

axiomatic Simplier user rules

• The Examiner now fully models function calls in all

proof contexts ie. VC generation takes account of

return annotation and pre-conditions

• Example …

Copyright © Altran Praxis

Slide 18

Proof Function: Example

• Refined in package body …

Copyright © Altran Praxis

Slide 19

--# function Contains (V : Integer ;

--# T : Tuple)

--# return Boolean ;

--# function Contains_Both (A : Integer ;

--# B : Integer ;

--# T : Tuple)

--# return Boolean ;

--# pre A /= B;

--# return Contains (A, T) and Contains (B, T);

--# function Contains (V : Integer ;

--# T : Tuple)

--# return Boolean ;

--# return T. First = V or T. Second = V;

#assume Annotation

• Use to replace user rules or manual proof reviews

• Like a check statement, except that there will be

no VCs generated to show that it is true.

• Example:

Copyright © Altran Praxis

Slide 20

--# accept W, 444 , "We increment the uptime counter once every

second .",

--# "The operational procedure requires that the system is",

--# "rebooted at least once every 3 years - as the uptime ",

--# "is stored in a signed 64 bit integer this means the ",

--# "counter can never overflow in the lifetime of the system .";

--# assume (Clock .T’ Last = 2**63 - 1) -> (T < Clock .T’ Last);

T := T + 1;

--# end accept;

Riposte

• Counter-example generation tool

• Result of a KTP project:

– Partnership with Bath University

– Part-funded by the Technology Strategy Board

• Improves productivity by distinguishing false VCs

from incomplete proofs

• Generates counter-examples (variable bindings)

for false VCs

Copyright © Altran Praxis

Slide 21

Current SPARK Proof Workflow

Copyright © Altran Praxis

Slide 22

Future Workflow

Copyright © Altran Praxis

Slide 23

Example 1 – Run Time Exceptions

• Attempt to prove absence of run time exceptions

in the following function:

• Riposte finds the one case in which taking the

absolute value of a 2's complement integer gives

an overflow …

Copyright © Altran Praxis

Slide 24

function Example_1 (X : in Integer) return Integer

--# return abs (X);

is

begin

 return abs (X);

end Example_1;

Example 1 – Riposte output

Copyright © Altran Praxis

Slide 25

*** Found a counter-example to function_example_1_1, conclusion C2:

 (For path(s) from start to run-time check associated with statement

of line 30:)

H2: x >= integer__first

H3: x <= integer__last

 ->

C2: abs(x) <= integer__last

This conclusion is false if:

 x = integer__first

*** VC function_example_1_1 - COUNTER_EXAMPLE

*** VC function_example_1_2 - PROVEN

*** Found a counter-example to function_example_1_1, conclusion C2:

 (For path(s) from start to run-time check associated with statement

of line 30:)

H2: x >= -2147483648

H3: x <= 2147483647

 ->

C2: abs(x) <= 2147483647

This conclusion is false if:

 x = -2147483648

*** VC function_example_1_1 - COUNTER_EXAMPLE

*** VC function_example_1_2 – PROVEN

‘riposte –n’ replaces

symbolic constants with

numbers

Example 2 – Functional

Correctness

Copyright © Altran Praxis

Slide 26

type Rec_T is record

 A : Integer;

 B : Integer;

 C : Integer;

end record;

procedure Example_2 (R : in out Rec_T)

--# derives R from R;

--# post R = R~[A => R~.C;

--# C => R~.A]

--# and R /= R~;

Is

 Tmp : Integer;

Begin

 Tmp := R.A;

 R.A := R.C;

 R.C := Tmp;

end Example_2;

Example 2 – Riposte output

Copyright © Altran Praxis

*** Found a counter-example to procedure_example_2_4, conclusion C2:

 (For path(s) from start to finish:)

H2: fld_c(r) >= integer__first

H3: fld_c(r) <= integer__last

H4: fld_b(r) >= integer__first

H5: fld_b(r) <= integer__last

H6: fld_a(r) >= integer__first

H7: fld_a(r) <= integer__last

 ->

C2: not upf_c(upf_a(r,fld_c(r)),fld_a(r)) = r

This conclusion is false if:

 r := rec_t'(

 a => 0

 b => 0

 c => 0

)

*** VC procedure_example_2_4 - COUNTER_EXAMPLE

Example 3

• Riposte can show that the post condition in the

following function does not hold:

• Riposte gives the following counter-example …

Copyright © Altran Praxis

Slide 28

function Example_3 (A : in U64;

 B : in U64)

 return U64

--# pre A > 17 and B > 19;

--# return X => X > 0;

is

begin

 return 73 xor (A * B);

end Example_3;

Example 3 – Riposte output

Copyright © Altran Praxis

*** Found a counter-example to function_example_3_1, conclusion C1:

 (For path(s) from start to finish:)

H1: a > 17

H2: b > 19

H3: a >= 0

H4: a <= u64__last

H5: b >= 0

H6: b <= u64__last

 ->

C1: bit__xor(73, (a * b) mod 2 ** 64) > 0

This conclusion is false if:

 a = 15617650143032034577

 b = 17670193526088673209

*** VC function_example_3_1 - COUNTER_EXAMPLE

Copyright © Altran Praxis

SPARK Training Programme

• Primary Courses:

– Software Engineering with SPARK

– Advanced SPARK Program Design and Verification

• Advanced Courses:

– Secure Software Development with SPARK *New*

– Introduction to the Proof Checker

– Concurrent Software Design with RavenSPARK

• Special Courses:

– SPARK - Two Day Overview

– Refresh Your SPARK

• Tailored Courses

Copyright © Altran Praxis

Secure Software Development

with SPARK

• Audience: SPARK users who wish to learn how to

exploit the SPARK language and verification tools

in the development of high-security software.

• Prerequisites: Software Engineering with SPARK

course or fluency with the SPARK language and

the Examiner.

• Training Method: A one-day course (which can

follow Software Engineering with SPARK directly),

combining presentations, exercises and practical

work.

Copyright © Altran Praxis

Course Content

• Security basics - policy, threats, and value

• System versus Software Security

• Safety and Security Properties

• SPARK in the high-grade and MILS environments

• Verification of Security Properties in SPARK

– Ada language features supporting security

– Information flow

– Robustness and "crash proofing“

– Defence against buffer overflow and other undefined behaviour

– Validating inputs

– Error handling and the role of defensive programming

– Application-specific security properties

– Comparison with CWE, SANS “Top 25”, ISO/SC22/WG23 PLV lists

• Case study: the Tokeneer ID Station

Copyright © Altran Praxis

SPARK Training Delivery

• On-site training

• Public courses

– Altran Praxis, Bath

– September 2012

• www.altran-praxis.com/trainingSpark.aspx

Copyright © Altran Praxis

Further Information

• Ada Europe Tutorials – Friday AM & PM

– AM: The Benefits of Using SPARK for High-

assurance Software

– PM: The Use of Proof and Generics in SPARK

• The SPARK Book!

• Product information: www.adacore.com/sparkpro

Copyright © Altran Praxis

Copyright © Altran Praxis

Altran Praxis Limited
20 Manvers Street

Bath BA1 1PX

United Kingdom

Telephone: +44 (0) 1225 466991

Facsimile: +44 (0) 1225 469006

Website: www.altran-praxis.com

Email: stuart.matthews@altran-praxis.com

