
Multiprocessor On-Line Scheduling
of Hard-Real-Time Systems

Michael Dertouzos and Aloysius MokMichael Dertouzos and Aloysius Mok
Published in

IEEE Transactions on Software Engineering, Vo. 15, No. 12, Dec 1989

Gurulingesh Raravi
CISTER/ISEP

29/10/2010

Overview

• Significance of the Paper

• Past Results

• The Scheduling Game Representation

• Uniprocessor Scheduling

Optimality of EDF– Optimality of EDF

• On-Line Multiprocessor Scheduling

– Why EDF is not optimal

– The Insufficient Knowledge Problem

• Conclusions

2

Significance of the Paper

• The paper showed that it is impossible to design

an optimal online algorithm for multiprocessor

scheduling

– In other words, a priori knowledge of all of the

following parameters is essential for designing an following parameters is essential for designing an

optimal multiprocessor scheduling algorithm:

1. Deadlines

2. Computation times and

3. Start-times

3

Past Results

• Uniprocessor:

– Liu/Layland’s sufficient and necessary condition for
scheduling periodic task sets

– EDF shown to be optimal for scheduling arbitrary task
sets (not necessarily periodic) by Dertouzos

• Multiprocessors:• Multiprocessors:

– EDF is not optimal

– Optimal scheduling algorithms for two processor by
Garey and Johnson

– The scheduling problem often becomes intractable for
more than two processors

• Except two special cases

• However, the algorithms for those exceptions are not optimal
anyway (when used online).

4

Scheduling Game Representation (1/6)

• Well-known (previous) representations:

1. Timing diagram

Task

3
4

5
6

2. Gantt chart

5

Time1 2 3 4 5
1

2
6

Time1 2 3 4 5 6

Processor
1

2

5

6 4

3

2

1 5

6

• Few Notations:

– The status of each task whose start-time has elapsed

can be characterized at time=i by:

• Remaining Computation: C(i) and

• Deadline: D(i)

Scheduling Game Representation (2/6)

– Laxity of a task at time=i:

• L(i) = D(i) – C(i)

• Laxity is a measure of task’s urgency. A task with:

– zero laxity => execute immediately without interruption

– negative laxity => a deadline will be missed

6

• The scheduling problem at time=i can be

modelled by configuration of “tokens” in the first

quadrant of Cartesian plane:

– Y-axis: C

– X-axis: L
C

5

Task L C D

Scheduling Game Representation (3/6)

– X-axis: L

– Token: represents a task

• Task `j´ with Cj(i) and Lj(i):

– L = Lj(i) and C = Cj(i)

7

1

2 3

L1 2 3 4 5
1

2
3

4
5

1 0 3 3

2 1 1 2

3 1 1 2

• Consider m tasks and n processors (m > n)

– At most n tasks can be executed at a time

• On L-C plane: scheduling corresponds to moving:

– n tokens one step downwards

• L(i+1) = L(i), C(i+1) = C(i) - 1

Scheduling Game Representation (4/6)

– Rest (m-n tokens) one step leftwards

• L(i+1) = L(i) - 1, C(i+1) = C(i)

– Scheduling algorithm decides the direction of token
movement at each step

– If a token reaches

• 2nd quadrant => algorithm failed

• L-axis (horizontal axis) => task met deadline
8

• A schedule can be simulated by a sequence of

configurations of tokens on the L-C plane:

1. Initial configuration of m tokens in Q-1

2. At each step, at most n tokens are moved one

step downwards and the rest one step leftwards

Scheduling Game Representation (5/6)

step downwards and the rest one step leftwards

3. A token that reaches L-axis (X-axis) is ignored

4. A scheduler fails if a token enters Q-2

5. The scheduler wins if all tokens eventually reach

L-axis without entering Q-2

9

• An Example:

– n=2 (processors), m=3 (tasks)

Task L C D

1 0 3 3

2 1 1 2
C

5

At time = 0

Scheduling Game Representation (6/6)

3 1 1 2

L

1

2 3

1 2 3 4 5

1
2

3
4

5

At time = 1

At time = 2

At time = 3

10

SUCCESS ☺☺☺☺

EDF Scheduling Properties (1/3)

• Uniprocessor

– Optimal scheduling algorithms:

• Earliest Deadline First (EDF), Least Laxity first (LLF)

– The optimality of EDF is proven by Dertouzos

• by showing that a feasible schedule can always be • by showing that a feasible schedule can always be

transformed into EDF schedule

– If at any time the processor executes some task other than the

one which has the closest deadline, then it is possible to

interchange their order of execution

• Multiprocessor

– EDF is not optimal

11

EDF Scheduling Properties (2/3)

• Optimality of EDF on Uniprocessor:

Transformation to EDF
Time1 2 3

Task

1

2

112

Processor

1

1 2 3

Task

Time

1

2

121

Processor

1

• Non-optimality of EDF on Multiprocessors:

1 2 3

Task

Time

1

3

2

Time1 2 3

32

111

Processor

1

2

Transformation to EDF

Time1 2 3

12

113

Processor

1

2

1 2 3

Task

Time

1

3

2

Time1 2 3

1121

12

Time1 2 3

1211

EDF Scheduling Properties (3/3)

• The system overhead due to context switching

required by EDF is at most twice that required by

any algorithm

– Loading of a task is considered as context switch

– An example to illustrate the concept:– An example to illustrate the concept:

1 2 3 4 5 6 Time

Task

LP

MP

HP

A non-preemptive schedule

1 2 3 4 5 6 Time

Task

LP

MP

HP

EDF schedule

13

The Insufficient Knowledge Problem (1/7)

• Another interesting thing about (optimal) EDF is:

– It is driven only by D and

– a priori information about C or S not required

• Whether such an algorithm exists for MPs?

– Unfortunately, NOT �– Unfortunately, NOT �

• No optimal algorithm can be designed for

multiprocessors without a priori information of:

1. Computation times

2. Deadlines and

3. Start-times
14

• Lemma: No optimal algorithm can exist if the
computation time of tasks are not known a priori

– An example: 2 processors, 3 tasks

Task C L D

1 2

2 2

4
5

C

Task L C D

1 0 2 2

2 1 1 2

The Insufficient Knowledge Problem (2/7)

• If scheduler picks task `j´ then we can

always arrange our example so that `j´

is represented by triangular token

• Lemma: No optimal algorithm can exist if the
deadlines of tasks are not known a priori

2 2

3 2

1 2 3 4 5 L

1
2

3

2 1 1 2

3 1 1 2
1

2 3

15

• Lemma: No optimal algorithm can exist if the

start-times of tasks are not known a priori

– An example: 2 processors, 3 tasks

– Depending on scheduler decision, there are 3 cases:

Case-1: A and B are moved down at time=0

The Insufficient Knowledge Problem (3/7)

1 2 3 4 5 L

1
2

3
4

5

C

A

CB

At time = 0

Case-1: A and B are moved down at time=0

At time = 1

D

E

1 2 3 4 5 L

1
2

3
4

5

C

A

CB

At time = 0

At time = 1

D

E

Deadline miss ���� Schedulable ☺☺☺☺

16

• Lemma: No optimal algorithm can exist if the

start-times of tasks are not known a priori

– An example: 2 processors, 3 tasks

– Depending on scheduler decision, there are 3 cases:

Case-2: B and C are moved down at time=0

The Insufficient Knowledge Problem (4/7)

1 2 3 4 5 L

1
2

3
4

5

C

A

CB

At time = 0

At time = 1

1 2 3 4 5 L

1
2

3
4

5

C

A

CB

At time = 0

At time = 1

At time = 2

F

G

Deadline miss ����

At time = 2

F

G

Schedulable ☺☺☺☺

Case-2: B and C are moved down at time=0

17

• Lemma: No optimal algorithm can exist if the

start-times of tasks are not known a priori

– An example: 2 processors, 3 tasks

– Depending on scheduler decision, there are 3 cases:

Case-3: Only B is moved down at time=0

The Insufficient Knowledge Problem (5/7)

1 2 3 4 5 L

1
2

3
4

5

C

A

CB

At time = 0

At time = 1

D

E

1 2 3 4 5 L

1
2

3
4

5

C

A

CB

At time = 0

At time = 1

D

E

Deadline miss ���� Schedulable ☺☺☺☺

Case-3: Only B is moved down at time=0

18

• The above reasoning can be generalized to more

than two processors

– since the extra processors can be kept busy by

introducing zero-laxity tasks

– Theorem: For two or more processors, no deadline

The Insufficient Knowledge Problem (6/7)

– Theorem: For two or more processors, no deadline

scheduling algorithm can be optimal without

complete a priori knowledge of:

1. Deadlines

2. Computation times and

3. Start-times of the tasks

19

• Inevitable failure of an online algorithm is due to:

– The possible existence of two or more sets of future

“conflicting” tasks

• Scheduler is forced to make an early commitment to meet

deadlines of one set of tasks at the expense of all others

If no a priori information is available to decide

The Insufficient Knowledge Problem (7/7)

• If no a priori information is available to decide

which one of the conflicting sets occur next then

– Optimal scheduling is possible only if the set of tasks

does not have conflicting subsets

• E.g., if C = 1 for all tasks then EDF is optimal run-time

algorithm (“swapping” argument)

20

Sufficient Condition for Conflict
Free Task Sets (1/3)

• In the rest of the paper, it is shown that:

– if a feasible schedule exists for a task set when their
start-times are same, then that task set can be scheduled
even when their start-times are different

• furthermore it is not necessary to know their start- times

Some Notations:• Some Notations:

– `j´th job: Jj

– L-C plane is divided into 3 regions

For all positive integer k:

• R1(k) = {Jj : Dj <= k}

• R2(k) = {Jj : Lj <= k and Dj > k}

• R3(k) = {Jj : Lj > k}
1 2 3 4 5 L

1
2

3
4

5

C

R1(3)

R3(3)

R2(3)

21

• “Surplus” computing power in next k time units:

– F(k) is a function of time and

∑∑ −−−⋅=

21

)()(
R

j

R

j LkCnkkF

3
4

5

C

token j

Lj
k-Lj

Sufficient Condition for Conflict
Free Task Sets (2/3)

should be denoted as F(k, i) to

signify that F(k) is computed

at time=i

• Lemma:

– A necessary condition for scheduling of a task set whose

start-times are the same (at time i=0) is that F(k,0) >= 0

1 2 3 4 5 L

1
2

3

R1(k)

R3(k)R2(k)

22

– Theorem (Sufficient Condition):

• If a feasible schedule exists for task set whose start-times
are same, then the same task set can be scheduled at
run-time even if their start-times are different and not
known a priori.

• Only knowledge of pre-assigned D and C is enough

Sufficient Condition for Conflict
Free Task Sets (3/3)

• Only knowledge of pre-assigned D and C is enough

– E.g., Least Laxity First

– Periodic Task Sets:

• LLF is non-optimal at run-time for periodic task sets

• Theorem (for periodic tasks):

– Let T=GCD(D1, ..., Dm) and t=GCD(T, T*C1/D1, ..., T*Cm/Dm) and U
<=n.

– A sufficient condition for scheduling task set on n processors is
that t be integral

23

Conclusions

• Contributions of the Paper

1. It is impossible to design an optimal run-time algorithm
for multiprocessor scheduling

• A priori knowledge of all the following parameters is essential :

1. Deadlines

2. Computation times

3. Start-times3. Start-times

2. If

• a task set can be successfully scheduled when their start-times
are the same (necessary condition: F(k, 0) >=0)

then

• they can be scheduled at run-time even if their start-times are
different and not known a priori (using LLF)

• Hence, LLF is optimal online algorithm if the above sufficient
condition (if part) is satisfied.

24

