Multiprocessor On-Line Scheduling of Hard-Real-Time Systems

Michael Dertouzos and Aloysius Mok

Published in
IEEE Transactions on Software Engineering, Vo. 15, No. 12, Dec 1989

Gurulingesh Raravi

CISTER/ISEP
29/10/2010

Overview

- Significance of the Paper
- Past Results
- The Scheduling Game Representation
- Uniprocessor Scheduling
- Optimality of EDF
- On-Line Multiprocessor Scheduling
- Why EDF is not optimal
- The Insufficient Knowledge Problem
- Conclusions

Significance of the Paper

- The paper showed that it is impossible to design an optimal online algorithm for multiprocessor scheduling
- In other words, a priori knowledge of all of the following parameters is essential for designing an optimal multiprocessor scheduling algorithm:

1. Deadlines
2. Computation times and
3. Start-times

Past Results

- Uniprocessor:
- Liu/Layland's sufficient and necessary condition for scheduling periodic task sets
- EDF shown to be optimal for scheduling arbitrary task sets (not necessarily periodic) by Dertouzos
- Multiprocessors:
- EDF is not optimal
- Optimal scheduling algorithms for two processor by Garey and Johnson
- The scheduling problem often becomes intractable for more than two processors
- Except two special cases
- However, the algorithms for those exceptions are not optimal anyway (when used online).

Scheduling Game Representation (1/6)

- Well-known (previous) representations:

1. Timing diagram

2. Gantt chart

Scheduling Game Representation (2/6)

- Few Notations:
- The status of each task whose start-time has elapsed can be characterized at time=i by:
- Remaining Computation: $C(i)$ and
- Deadline: D(i)
- Laxity of a task at time=i:
- $\mathrm{L}(\mathrm{i})=\mathrm{D}(\mathrm{i})-\mathrm{C}(\mathrm{i})$
- Laxity is a measure of task's urgency. A task with:
- zero laxity => execute immediately without interruption
- negative laxity => a deadline will be missed

Scheduling Game Representation (3/6)

- The scheduling problem at time=i can be modelled by configuration of "tokens" in the first quadrant of Cartesian plane:
- Y-axis: C
- X-axis: L
- Token: represents a task
- Task ${ }^{\mathrm{j}}$ ' with $\mathrm{C}_{\mathrm{j}}(\mathrm{i})$ and $\mathrm{L}_{\mathrm{j}}(\mathrm{i})$:
$-L=L_{j}(i)$ and $C=C_{j}(i)$

Scheduling Game Representation (4/6)

- Consider m tasks and n processors ($m>n$)
- At most n tasks can be executed at a time
- On L-C plane: scheduling corresponds to moving:
$-n$ tokens one step downwards
- $\mathrm{L}(\mathrm{i}+1)=\mathrm{L}(\mathrm{i}), \mathrm{C}(\mathrm{i}+1)=\mathrm{C}(\mathrm{i})-1$
- Rest (m-n tokens) one step leftwards
- L(i+1) = L(i) - $1, C(i+1)=C(i)$
- Scheduling algorithm decides the direction of token movement at each step
- If a token reaches
- $2^{\text {nd }}$ quadrant $=>$ algorithm failed
- L-axis (horizontal axis) => task met deadline

Scheduling Game Representation (5/6)

- A schedule can be simulated by a sequence of configurations of tokens on the L-C plane:

1. Initial configuration of m tokens in Q-1
2. At each step, at most n tokens are moved one step downwards and the rest one step leftwards
3. A token that reaches L-axis (X-axis) is ignored
4. A scheduler fails if a token enters $\mathrm{Q}-2$
5. The scheduler wins if all tokens eventually reach L-axis without entering Q-2

Scheduling Game Representation (6/6)

- An Example:
- $\mathrm{n}=2$ (processors), $\mathrm{m}=3$ (tasks)

Task	L	C	D
1	0	3	3
2	1	1	2
3	1	1	2

EDF Scheduling Properties (1/3)

- Uniprocessor
- Optimal scheduling algorithms:
- Earliest Deadline First (EDF), Least Laxity first (LLF)
- The optimality of EDF is proven by Dertouzos
- by showing that a feasible schedule can always be transformed into EDF schedule
- If at any time the processor executes some task other than the one which has the closest deadline, then it is possible to interchange their order of execution
- Multiprocessor
- EDF is not optimal

EDF Scheduling Properties (2/3)

- Optimality of EDF on Uniprocessor:

- Non-optimality of EDF on Multiprocessors:

EDF Scheduling Properties (3/3)

- The system overhead due to context switching required by EDF is at most twice that required by any algorithm
- Loading of a task is considered as context switch
- An example to illustrate the concept:

The Insufficient Knowledge Problem (1/7)

- Another interesting thing about (optimal) EDF is:
- It is driven only by D and
- a priori information about C or S not required
- Whether such an algorithm exists for MPs?
- Unfortunately, NOT :
- No optimal algorithm can be designed for multiprocessors without a priori information of:

1. Computation times
2. Deadlines and
3. Start-times

The Insufficient Knowledge Problem (2/7)

- Lemma: No optimal algorithm can exist if the computation time of tasks are not known a priori
- An example: 2 processors, 3 tasks

Task	\mathbf{L}	\mathbf{C}	\mathbf{D}
$\mathbf{1}$	0	2	$\mathbf{2}$
2	1	1	$\mathbf{2}$
3	1	1	$\mathbf{2}$

- If scheduler picks task ${ }^{j}$ ' then we can always arrange our example so that ' j ' is represented by triangular token

- Lemma: No optimal algorithm can exist if the deadlines of tasks are not known a priori

The Insufficient Knowledge Problem (3/7)

- Lemma: No optimal algorithm can exist if the start-times of tasks are not known a priori
- An example: 2 processors, 3 tasks
- Depending on scheduler decision, there are 3 cases:

Case-1: A and B are moved down at time=0

The Insufficient Knowledge Problem (4/7)

- Lemma: No optimal algorithm can exist if the start-times of tasks are not known a priori
- An example: 2 processors, 3 tasks
- Depending on scheduler decision, there are 3 cases:

Case-2: B and C are moved down at time $=0$

The Insufficient Knowledge Problem (5/7)

- Lemma: No optimal algorithm can exist if the start-times of tasks are not known a priori
- An example: 2 processors, 3 tasks
- Depending on scheduler decision, there are 3 cases:

Case-3: Only B is moved down at time=0

The Insufficient Knowledge Problem (6/7)

- The above reasoning can be generalized to more than two processors
- since the extra processors can be kept busy by introducing zero-laxity tasks
- Theorem: For two or more processors, no deadline scheduling algorithm can be optimal without complete a priori knowledge of:

1. Deadlines
2. Computation times and
3. Start-times of the tasks

The Insufficient Knowledge Problem (7/7)

- Inevitable failure of an online algorithm is due to:
- The possible existence of two or more sets of future "conflicting" tasks
- Scheduler is forced to make an early commitment to meet deadlines of one set of tasks at the expense of all others
- If no a priori information is available to decide which one of the conflicting sets occur next then
- Optimal scheduling is possible only if the set of tasks does not have conflicting subsets
- E.g., if $\mathrm{C}=1$ for all tasks then EDF is optimal run-time algorithm ("swapping" argument)

Sufficient Condition for Conflict Free Task Sets (1/3)

- In the rest of the paper, it is shown that:
- if a feasible schedule exists for a task set when their start-times are same, then that task set can be scheduled even when their start-times are different
- furthermore it is not necessary to know their start- times
- Some Notations:
- 'j'th job: J J
- L-C plane is divided into 3 regions

For all positive integer k :

- $\mathrm{R}_{1}(\mathrm{k})=\left\{\mathrm{J}_{\mathrm{j}}: \mathrm{D}_{\mathrm{j}}<=\mathrm{k}\right\}$
- $R_{2}(k)=\left\{J_{j}: L_{j}<=k\right.$ and $\left.D_{j}>k\right\}$
- $R_{3}(k)=\left\{J_{j}: L_{j}>k\right\}$

Sufficient Condition for Conflict Free Task Sets (2/3)

- "Surplus" computing power in next k time units:

$$
F(k)=k \cdot n-\sum_{R_{1}} C_{j}-\sum_{R_{2}}\left(k-L_{j}\right)
$$

- $F(k)$ is a function of time and should be denoted as $F(k, i)$ to signify that $F(k)$ is computed at time=i
- Lemma:
- A necessary condition for scheduling of a task set whose start-times are the same (at time $i=0$) is that $F(k, 0)>=0$

Sufficient Condition for Conflict Free Task Sets (3/3)

- Theorem (Sufficient Condition):
- If a feasible schedule exists for task set whose start-times are same, then the same task set can be scheduled at run-time even if their start-times are different and not known a priori.
- Only knowledge of pre-assigned D and C is enough
- E.g., Least Laxity First
- Periodic Task Sets:
- LLF is non-optimal at run-time for periodic task sets
- Theorem (for periodic tasks):
- Let $\mathrm{T}=\mathrm{GCD}\left(\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{m}}\right)$ and $\mathrm{t}=\mathrm{GCD}\left(\mathrm{T}, \mathrm{T}^{*} \mathrm{C}_{1} / \mathrm{D}_{1}, \ldots, \mathrm{~T}^{*} \mathrm{C}_{\mathrm{m}} / \mathrm{D}_{\mathrm{m}}\right)$ and U <=n.
- A sufficient condition for scheduling task set on n processors is that t be integral

Conclusions

- Contributions of the Paper

1. It is impossible to design an optimal run-time algorithm for multiprocessor scheduling

- A priori knowledge of all the following parameters is essential :

1. Deadlines
2. Computation times
3. Start-times
4. If

- a task set can be successfully scheduled when their start-times are the same (necessary condition: $F(k, 0)>=0$)
then
- they can be scheduled at run-time even if their start-times are different and not known a priori (using LLF)
- Hence, LLF is optimal online algorithm if the above sufficient condition (if part) is satisfied.

