
Scheduling Algorithms for
Multiprocessor

Paulo Baltarejo Sousa

24/09/2010



Agenda

2

! Part I: Scheduling Algorithms for Multiprocessor in a Hard Real-Time
Environment

! Part II: Scheduling Algorithms for Multiprocessor Systems

! Global

! Partitioned

! Semi-partitioned



Part I:
Scheduling Algorithms for Multiprocessor

in a Hard Real-Time Environment
C. L. Liu

1969

3



Notation and Assumptions

4

! A task set (τ) is composed by n tasks (τ = {τ1 · · · τn}):

! Each task is independent and is characterized by three-tuple (Ci,Ti,Di),
where:

! C - Execution time

! T - Period

! D - Deadline

! The system is composed by m processors and preemption is allowed.

! A task is said to be background task if it is allowed to execute on any
processor.

! A non-background task executes on a dedicated processor.

! Background computation time on m processors is the non-overlapping
processor time on these m processors available to execute background
tasks.



Period-driven

5

! Period-driven scheduling algorithm (shorter period, the higher priority) is
not optimun for multiprocessor systems.

C T U = C/T

τ1 2.0 3.0 0.62
τ2 3.0 4.0 0.75
τ3 4.0 7.0 0.57

Us =
1

m

nX

i

Ui

= 0.97

! task τ1 executes on processor P1 (non-
background task).

! task τ2 executes on processor P2 (non-
background task).

! task τ3 executes on processor P1 and P2

(background task).

0 t

τ3

τ2

τ1

P1

P2

0 1 2 3 4 5 6 7 8

τ1

P1

τ1

P1

τ1

P1

τ2

P2

τ2

P2

τ3

P1

τ3

P2

τ3

P1

τ3

P2

τ3 misses deadline

ri,j di,j Execution fi,j



Theorem 1: definition

6

! Theorem 1: A lower bound δm+1 to the value of Cm+1 such that the
period-driven scheduling algorithm is feasible for Cm+1 ≤ δm+1

! Given the values T1, T2, ..., Tm and Tm+1 and C1, C2, ..., Cm, theorem
1 gives a lower bound to the value of Cm+1, such that the period-driven
scheduling algorithm is feasible.

! Consider the following task set (composed by three tasks) to be
scheduled on a system composed by m = 2 processors.

! Which is the value of C3?

C T

τ1 2.0 3.0
τ2 3.0 4.0
τ3 ? 7.0



Theorem 1: concepts : gj(t)

7

! gj(t) gives a lower bound to the background computation time on
processors P1, P2,· · · , Pj , within any contiguous t time units.

g1(C1) = g1(2)
= 0;

0 t

τ3

τ2

τ1

P1

P2

0 1 2 3 4 5 6 7 8

τ1

P1

ri,j di,j Execution fi,j



Theorem 1: concepts : gj(t)

8

! gj(t) gives a lower bound to the background computation time on
processors P1, P2,· · · , Pj , within any contiguous t time units.

g1(C1) = g1(2) = 0
g1(C2) = g1(3) = 1
g2(C2) = g2(3) = 1

0 t

τ3

τ2

τ1

P1

P2

0 1 2 3 4 5 6 7 8

τ1

P1

τ2

P2

ri,j di,j Execution fi,j



Theorem 1: concepts : δi

9

! δi, i = 1, 2, · · · , m is a lower bound to the background computation time
on processors P1, P2,· · · , Pi, within each cycle of task τi.

δ1 = T1 − C1

δi = Ti − Ci + max(g1(Ci), g2(Ci), · · · , gi−1(Ci)),
i = 2, · · · , m

δm+1 = max(g1(Tm+1), g2(Tm+1), · · · , gm(Tm+1))



Theorem 1: concepts : δi

10

! δi, i = 1, 2, · · · , m is a lower bound to the background computation time
on processors P1, P2,· · · , Pi within each cycle of task τi.

δ1 = T1 − C1

= 3 − 2
= 1

0 t

τ3

τ2

τ1

P1

P2

0 1 2 3 4 5 6 7 8

τ1

P1

ri,j di,j Execution fi,j



Theorem 1: concepts : δi

11

! δi, i = 1, 2, · · · , m is a lower bound to the background computation time
on processors P1, P2,· · · , Pi within each cycle of task τi.

δ1 = T1 − C1 = 1
δ2 = T2 − C2 + g1(C2)

= 4 − 3 + 1
= 2

0 t

τ3

τ2

τ1

P1

P2

0 1 2 3 4 5 6 7 8

τ1

P1

τ1

P1

τ2

P2

ri,j di,j Execution fi,j



Theorem 1: concepts : δi

12

! δi, i = 1, 2, · · · , m is a lower bound to the background computation time
on processors P1, P2,· · · , Pi within each cycle of task τi.

δ1 = 1
δ2 = 2
δ3 = max(g1(T3), g2(T3))

= max(2, 3)
= 3

0 t

τ3

τ2

τ1

P1

P2

0 1 2 3 4 5 6 7 8

τ1

P1

τ1

P1

τ1

P1

τ2

P2

τ2

P2

ri,j di,j Execution fi,j



Theorem 1: δm+1

13

! With C3 = 3, task set (τ) is
schedulable.

0 t

τ3

τ2

τ1

P1

P2

0 1 2 3 4 5 6 7 8

τ1

P1

τ1

P1

τ1

P1

τ2

P2

τ2

P2

τ3

P1

τ3

P2

τ3

P1

ri,j di,j Execution fi,j



Theorem 1: general case

14

δm+2 =

(⌊
Tm+2

Tm+1

⌋
− 1

)
(δm+1 − Cm+1)

δm+3 =

(⌊
Tm+3

Tm+2

⌋
− 1

)
(δm+2 − Cm+2)

...



Conclusions

15

! It is 4 pages paper (more precisely 3.5 pages, with two big tables)

! Focus is on period-driven and also on deadline-driven scheduling
algorithms for multiprocessor systems.

! The content is not very clear and mathematical formulation is the same
for both types of scheduling algorithms, based on time t, Ti and Ci, but
the results are different (using the same task set).

! Main contribution: Few of the results obtained for a single processor
generalize directly to the multiple processor case... bringing in additional
processors adds a new dimension to the scheduling problem.



Part II:
Scheduling Algorithm for Multiprocessor

Systems

16



Scheduling Algorithm for Multiprocessors

17

! Multiprocessor scheduling algorithms are categorized as:

! Global scheduling algorithms store tasks in one global queue,
shared by all processors. At any moment, the m highest-priority
tasks among those are selected for execution on the m processors.

! Partitioned scheduling algorithms part the task set such that all
tasks in a partition are assigned to the same processor.

! Semi-partitioned or task-splitting scheduling algorithms; some
tasks are assigned to specific processors, as partitioned, and the
other tasks may migrate between processors, like global.



Task Set

18

! Consider a preemptive system composed by three (m = 3) identical
processors (P1, P2 and P3) and a synchronous periodic task set
composed by four (n = 4) independent tasks (τ1,...,τ4) with implicit
deadlines (Di = Ti).

Task C T U

τ1 9 10 0.900
τ2 6 9 0.667
τ3 4 7 0.571
τ4 3 6 0.500

Us = 1
m

P4
i=1 Ui = 0.879.



Global

19



Global EDF

20

! Under global EDF scheduling policy, all tasks are stored into a global
queue sorted by the absolute deadline and at each time t the m highest
priority tasks ready to be executed, executes on m processors.

0 t

Global EDF
queue

τ4

τ3

τ2

τ1

P1

P2

P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ1

P3

τ1

P2

τ1

P1

τ1

P3

τ2

P3

τ2

P2

τ2

P1

τ2

P3

τ2

P2

τ2

P1

τ3

P2

τ3

P1

τ3

P3

τ3

P2

τ4

P1

τ4

P2

τ4

P2

τ1 misses deadline

ri,j di,j Execution fi,j



Earliest Deadline First until Zero Laxity
(EDZL)

21

! EDZL for multiprocessor systems is a global scheduling algorithm that
combines the features of two uniprocessor scheduling algorithms: EDF
and LLF. LLF scheduling algorithm is a scheduling algorithm that
assigns higher priority to a task with the least laxity.

! The laxity of a task at time t is defined as the difference between the
deadline and the amount of execution time remaining to be complete.

0 t

Global EDZL
queue

τ4

τ3

τ2

τ1

P1

P2

P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ1

P1

τ1

P3

τ2

P3

τ2

P3

τ2

P2

τ2

P3

τ2

P2

τ2

P1

τ3

P2

τ3

P3

τ3

P2

τ3

P3

τ3

P2

τ3

P1

τ4

P1

τ4

P2

τ4

P3

τ4

P2

τ4

P2

ri,j di,j Execution fi,j



Pfair scheduling algorithms

22

! The main idea of the pfair scheduling algorithms is to provide a
proportionate progress according to the task utilization. For that, pfair
breaks each task in an infinite sequence of quantum-length subtasks
and each subtask has a pseudo-release and a pseudo-deadline.

0 t

Global PF queue

τ4

τ3

τ2

τ1

P1

P2

P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ1

1

τ3

1

τ2

1

τ4

1

τ1

2

2

τ1

3

τ3

2

τ4

2

4

τ2

3

τ3

3

5

4

τ4

3

6

τ3

4

7

τ2

5

τ4

4

8

τ3

5

τ2

6

9

τ4

5

τ3

6

τ2

7

τ1

10

τ2

8

τ4

6

11

τ3

7

12

τ2

9

τ3

8

τ4

7

τ1

13

τ2

10

ri,j di,j Execution fi,j Window



Partitioned

23



Bin-packing

24

! The partitioned scheduling algorithms are composed by two algorithms:
offline task assigning algorithm and the online dispatching algorithm.

! Assigning tasks to processors is a bin-packing problem, which is known
to be a NP-hard problem.

! The main goal of bin-packing is to pack a collection of items with
different sizes into the minimum number of fixed-size bins such that the
total weight, volume, etc. does not exceed some maximum value.

! In the context of real-time scheduling algorithm, each item is a task τi

that composed the task set (τ), the size of each item is the utilization of
task (Ui), each bin is a processor (Pi) and the size of each bin is the
capacity of processor.

! There are several heuristics for these kind of problems, examples of
those heuristics are Next-fit (NF), First-Fit (FF) and Best-Fit (BF).



Partitioned

25

! The partitioned scheduling algorithms assign statically tasks to the
processor and those are scheduled on each processor using an
uniprocessor scheduling algorithm, like, for instance, RM or EDF.

! Assuming that the assignment algorithm work as the FF bin-packing
that assigns tasks one by one to the lowest-indexed processor where
each fits, then, tasks τ1 (with U1 = 0.900), τ2 (with U2 = 0.667) and τ3

(with U3 = 0.571) are assigned to processors P1, P2 and P3,
respectively. Consequently, task τ4 (with U4 = 0.500) cannot be
assigned to any processor, because none of them have capacity enough
to encompass this task.

P1

P2

P3

0% 50% 100%
Processor capacity

τ1

τ2

τ3

τ4



Semi-partitioned

26



EDF-Window-constraint Migration (EDF-
WM)(I)

27

! Each task is assigned to an individual processor using FF bin-packing
heuristic. A task is split, only when no individual processor has
remaining capacity enough to encompass that task.

! The execution of task τ4 on processors P1, P2 and P3 cannot violate the
timimg requeriments of the already assigned tasks.

P1

P2

P3

0% 50% 100%
Processor capacity

τ1

τ2

τ3

τ4

τ4

τ4



EDF-Window-constraint Migration (EDF-
WM)(II)

28

! The online dispatching algorithm schedules tasks on each processor
under EDF scheduling algorithm.

0 t

P1 queue

P2 queue

P3 queue

Task split
among P1,
P2 and P3 τ4

τ3

τ2

τ1

P1

P2

P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ4

P1

τ1

τ2

τ3

τ4

P2

τ2

τ4

P3

τ4

P1

τ1

τ3

τ4

P2

τ2

τ1

τ4

P3

τ3

τ4

P1

τ1

ri,j di,j Execution fi,j Window



Sporadic Multiprocessor Scheduling (SMS)
(I)

29

! The SMS algorithm divides time into slots.

! A task whose utilization exceed SEP is assigned to a dedicated
processor.

! Task splitting is performed whenever a task causes the utilization of the
processor to exceed SEP.

P1

P2

P3

0% 50% SEP 100%
Processor capacity

τ1

τ2 τ3

τ3 τ4



Sporadic Multiprocessor Scheduling (SMS)
(II)

30

! heavy tasks execute on a dedicated processor.

! split task execute on reserves.

! The non-split tasks are scheduled under EDF scheduling algorithm.

0 t

P1 queue

P2 queue

Task split
between

P2 and P3

P3 queue τ4

τ3

τ2

τ1

P1

P2

P3

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5

S S S S S S S S S

y y y y y y y y y

x x x x x x x x x

τ1

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ1

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ2 τ3

P2

τ3

P3

τ4

ri,j di,j Execution fi,j



Notional Processor Scheduling - Fractional
capacity (NPS-F) (I)

31

! NPS-F uses an approach based on bins. To each bin is assigned one or
more tasks and there is one to one relation between each bin and each
notional processor.

! Then, notional processor schedules tasks of each bin under EDF
scheduling policy.

! In turn, all notional processors are implemented upon the m physical
processors (P1 to Pm) by the means of reserves.

P1

P2

P3

0% 50% 100%
Processor capacity

P̃1 P̃2

P̃2 P̃3

P̃3 P̃4



Notional Processor Scheduling - Fractional
capacity (NPS-F) (II)

32

! The dispatching algorithm is very simple, tasks are only allowed to
execute within their reserves, that is, within reserves of the notional
processors.

0 t

P1 queue

Task split
between

P1 and P2

Task split
between

P2 and P3

P3 queue τ4

τ3

τ2

τ1

P1

P2

P3

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5

S S S S S S S S S

τ1

τ2

P2

τ3

P2

τ3

P3

τ4

τ1

τ2

P2

τ3

P2

τ3

P3

τ4

τ1

τ2

P2

τ3

P2

τ3

P3

τ4

τ1

τ2

P2

τ3

P2

τ3

P3

τ4

τ1

τ2

P2

τ3

P2

τ3

P3

τ4

τ1

τ2

P2

τ3

P2

τ3

P3

τ4

τ1 τ1τ2

P1

τ2

P2

τ3

P2

τ3

P3

τ4

τ1

τ2

P2

τ3

P2

τ3

P3

τ4

τ1

τ2

P2

τ3

P2

τ3

P3

τ4

τ2

P1

τ2

P1

τ2

P1

τ2

P1

τ2

P1

τ2

P1

τ2

P1

τ2

P1

ri,j di,j Execution fi,j



Conclusions (I)

33

! Global

+ High utilization

- Higher number of migra-
tions (Cache misses)

- Complex dispatcher

- Shared queue (implies the
use of synchronization
mechanisms)

! Partitioned

+ No migrations

+ Simple dispatcher

+ No need the use of syn-
chronization mechanisms

+ Lower number of preemp-
tions

- Low utilization

- The offline assign algo-
rithm



Conclusions (II)

34

! Semi-Partitioned: tries to get the advantages of the global and the
partitioned

! limited migrations

! Simple dispatcher

! No need the use of synchronization mechanisms

! High utilization

! Lower number of preemptions



Questions

35

Thank you for your attention!


