
IMPROVING SOFT REAL-TIME

PERFORMANCE THROUGH BETTERPERFORMANCE THROUGH BETTER

SLACK RECLAIMING

AUTHORS:

CAIXUE LIN AND SCOTT A.BRANDT
Presenter: 

Muhammad Ali Awan

PhD Student, Cister-ISEP, Portugal.

1



OUTLINE

� Motivation

� Slack

� When to allocate slack

� Task selection to allocate slack

Borrowing from the future� Borrowing from the future

� Donating to the past

� Results

� Conclusion

2



MOTIVATION

� Application with variety of timing constraints

� Hard real time

� Soft real time

� Best Effort 

� Performance Guarantee� Performance Guarantee

� Worst case resource reservation

� Average case resource reservation 

� Effective Distribution of slack

3



WHAT IS SLACK

� The execution time not used in system is called 

slack.

4

Slack

Static Slack

Dynamic Slack

Sporadic 
Delay(Task 

Jitter)

(Allocated 
Budget)-(Actual 
Execution Time)



WHEN TO ALLOCATE SLACK

� Allocate When Real 

Time(RT) task are idle

� Isolates RT tasks

� Delays slack use

Task Set, T(E,T)

5

� Task Set, T(E,T)

� T1(1.5,6), .5 unit overrun

� T2(4,8), needs 2 unit

� T3(2.5,10)



WHEN TO ALLOCATE SLACK

Principle 1: 

Allocate slack as early as possible, with the 

priority of the donating task. 

�SRAND implements principle 1

� On task completion, remaining budget is 

allocated to randomly selected task

� Fewer deadline misses

� Random selection is not optimal
6



TASK SELECTION TO ALLOCATE SLACK

� Allocate to only overrun 

task.

� No overrun task at the 

time of slack generation

7

� Task Set

� T1(1.5,6), needs 1 unit

� T2(4,8), .5 unit overrun

� T3(2.5,10)



TASK SELECTION TO ALLOCATE SLACK

Principle 2: 

Allocate slack to the task with the highest priority 
(earliest deadline(ED)).

� SLAD Implements principle 1 and 2. 
� Make available as soon as possible(principle 1)

Give it pre-emptively to Earliest Deadline task(principle 2)� Give it pre-emptively to Earliest Deadline task(principle 2)

� Task consumes slack first, before its reservation

� Interrupting higher priority task consumes leftover slack

� Reasons
� ED task is the Most critical task

� Least likely to receive slack

� Mostly likely to overrun

� SLAD outperforms SRAND and CBS 8



BORROWING FROM FUTURE

� CBS, RBED, IRIS and 
BEBS 
� allocate from future if 
overrun

� Extend the deadline

� SLAD
� Allows future borrowing 

9

� Allows future borrowing 
(no slack available)

� Taskset
� T1(1.5,3), 

� J1 needs 2 units and J2
needs 1 unit

� T2(1,8), 

� T3(3,8)



BORROWING FROM FUTURE

Principle 3

Allow tasks to borrow against their 

own future resource reservations 

(with the priority of the job from (with the priority of the job from 

which the resources are borrowed) 

to complete their current job.

10



BORROWING FROM FUTURE

� SLASH implements principle 1, 2 and 3

� Allows donation as soon as possible, to earliest 

deadline task (principle 1 and 2)

� Allows borrowing from future job releases 

� Similar to (CBS, RBED, IRIS and BEBS)

� In this way it serve the most critical jobs first 

� Assumes borrowed resources will turn out to be slack

� Issue with principle 3

� Overrun task misses opportunity to get slack 

donation(priority lowered)

11



BORROWING FROM FUTURE

Revised Principle 2

Allocate slack to the task with the 

highest priority (earliest original 

deadline)deadline)

12



DONATING TO THE PAST

� Issue

� Finished job with 

borrowed budget from 

future

� No longer in the ready 

13

� No longer in the ready 

queue

� Taskset

� T1(1.5,3), 

� J1 and J2needs 2 units

� T2(1,8), needs 0.5 units

� T3(3,8)



DONATING TO THE PAST

Principle 4:

Retroactively allocate slack to tasks that have 
borrowed from their current budget to 

complete a previous job.

� BACKSLASH Implements principle 1,2,3 and 4� BACKSLASH Implements principle 1,2,3 and 4
� Similar to HistroyReWriting paper for fixed 
priorities(Static Rate monotonic)

� Task that previously consumed slack are eligible to 
receive future slack donations

� Need to store 

� information of the completed jobs that borrowed

�Depleting jobs

� Outperforms over all other algorithms (SRAND, 
SLAD and SLASH) 14



RESULTS

� Metrics

� Deadline Miss Ratio

� (deadline misses /Number of jobs)

� Tardiness

� (Total accumulated lateness/Total length of All Periods)(Total accumulated lateness/Total length of All Periods)

� Fixed task sets 

� Random Task set

15



FIXED TASK SET

(PERFORMANCE AS FUNCTION OF SYSTEM

LOAD)

16



DEADLINE MISS RATIO AS FUNCTION OF

LOAD

17



TARDINESS AS FUNCTION OF LOAD

18



FIXED TASK SET

(PERFORMANCE AS A FUNCTION OF PERIOD)

19



DEADLINE MISS RATIO AS A FUNCTION OF

PERIOD

20



TARDINESS AS A FUNCTION OF PERIOD

21



RANDOM TASK SET

� Variation

� Number of Hard real time task

� Number of soft real time task 

� Task model (periodic, aperiodic)

� Task Parameters (1ms to 1000ms)� Task Parameters (1ms to 1000ms)

� Periods

� Execution time

� Selected random workload

� 12 task sets

� Each with 8 periodic/aperiodic (random distribution among 

soft and hard RT tasks) 22



23



24



25



26



CONCLUSION

� 4 principle 

� As early as possible

� Allocate to earliest deadline first

� Borrow from future 

� Retroactively allocate slack � Retroactively allocate slack 

� Implemented the principles in four algorithms

� SRAND, SLAD, SLASH and BACKSLASH

� BACKSLASH outperform all other algorithms, 

including CBS, CASH, RBED and IRIS

27



REFERENCES

� All material and figures are taken from the 

original paper(Improving Soft Real-Time 

Performance Through Better Slack Reclaiming). 

� Slack slide is extracted from the SMARTS(Slack 

MAnagement for hierarchical Real-Time MAnagement for hierarchical Real-Time 

Systems) project proposal. 

28



29


