Bounds on Multiprocessing Timing Anomalies

R. L. Graham Presented by Dakshina Dasari

Outline of the presentation

- Introduction
- System model
- Examples of Anomalies in multiprocessors
- Bounds for some cases
- Conclusion

Introduction

- More resources to increase speed of processing : Employ multiprocessors
- Minimize dependency between tasks to exploit parallelism
- Generally true, but some exceptions (or anomalies do exist)
- Good to know about these exceptions when we allocate resources

System Model

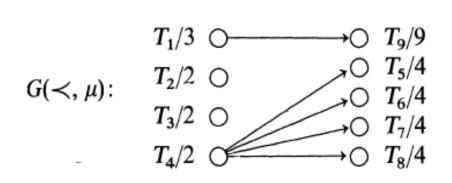
- N identical processing units P_i {i=1..n}
- Set of tasks T_i {i=1..n}
- Partial order < on T</p>
 - If T_i < T_j then T_i cannot be started until T_j has been completed.
- − Function μ : T→(0,∞)
 - Task T_j takes $\mu(T_j)$ units of time
- Tasks are run to completion and not interrupted
- Sequence $L = (T_{i1}, ..., T_{ir})$ contains Tasks ready to be executed . Also called priority list

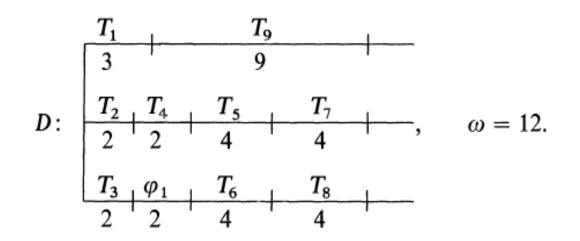
System description

- Processors : scan the list when idle
- Search for tasks which are ready to be executed
 - Have no precedence constraints
 - 2 processors scan list L together ?
 - Assign task to the processor with the smaller index
- If no tasks ready processors becomes idle
 - (We say that it executes an empty task ϕ)
- Finishing time $\boldsymbol{\omega}$: Time at which all tasks are completed

Example to illustrate anomalies

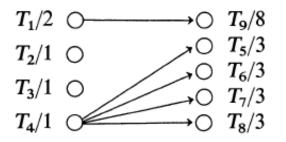
Example. n = 3; $L = (T_1, T_2, \dots, T_9)$.



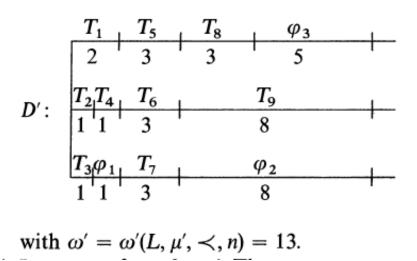


Decreasing computation times

(iii) Decrease μ to μ' by defining $\mu'(T_i) = \mu(T_i) - 1$ for all *i*. In this case $G(\prec, \mu)$ becomes

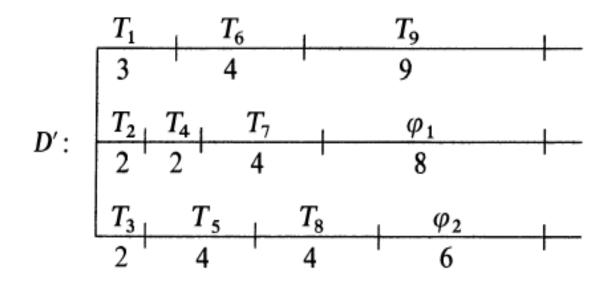


and



Relaxation of precedence constraints

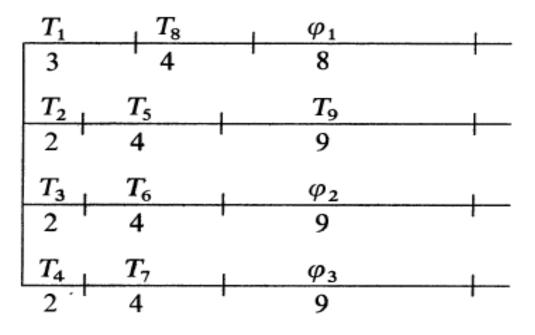
Change \prec to \prec' by removing $T_4 \rightarrow T_5$ and $T_4 \rightarrow T_6$.



and $\omega' = \omega'(L, \mu, \prec', n) = 16.$

Increasing the number of processors

(iv) Increase n from 3 to 4. Then



and $\omega' = 15$.

Observations

- The finishing time can increased even after
 - Relaxing the precedence constraints
 - Increasing the number of processors or
 - Decreasing the computation time

Theorem 1

Case 1 :

- Given a set of T tasks
- A function μ , a partial order <
- A list L, n identical processors,
- ω the finishing time for this task set

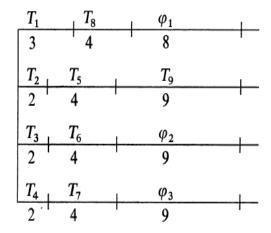
Case 2 :

- Given the same set T of tasks as in Case 1
- A function $\mu' \leq \mu$, a partial order <' which is a subset of <
- A list L', n' identical processors,
- ω' the finishing time for this task set

Then $\omega' \leq \omega (1+(n-1)/n')$

Some observations

$$\omega' = \frac{1}{n'} \left\{ \sum_{T_k \in T} \mu'(T_k) + \sum_{\varphi'_i \in D'} \mu'(\varphi'_i) \right\}$$



$$\sum_{\varphi'_i \in D'} \mu'(\varphi'_i) \leq (n'-1) \sum_{k=1}^m \mu'(T_{j_k}),$$

sum (in time units) of empty tasks

Proof of the theorem

mono

(1)
$$T_{j_m} \prec' T_{j_{m-1}} \prec' \cdots \prec' T_{j_2} \prec' T_{j_1}$$

in D' such that at every time $t \in B$, some T_{j_k} is being executed. We say that this chain covers B. The important thing to notice about this chain is

(2)
$$\sum_{\varphi'_i \in D'} \mu'(\varphi'_i) \leq (n'-1) \sum_{k=1}^m \mu'(T_{j_k}),$$

where the left-hand sum is over all empty tasks φ'_i in D'. But (1) and the hypothesis $\prec' \subseteq \prec$ imply

$$(3) T_{j_m} \prec T_{j_{m-1}} \prec \cdots \prec T_{j_2} \prec T_{j_1}.$$

Thus

(4)
$$\omega \ge \sum_{k=1}^{m} \mu(T_{j_k}) \ge \sum_{k=1}^{m} \mu'(T_{j_k}).$$

Consequently, by (2) and (4),

(5)
$$\omega' = \frac{1}{n'} \left\{ \sum_{T_k \in T} \mu'(T_k) + \sum_{\varphi'_i \in D'} \mu'(\varphi'_i) \right\}$$
$$\leq \frac{1}{n'} (n\omega + (n' - 1)\omega).$$

From this we obtain

(6)
$$\frac{\omega'}{\omega} \leq 1 + \frac{n-1}{n'},$$

and the theorem is proved.

Theorem 1 (Contd..)

$\omega' \leq \omega(1+(n-1)/n')$

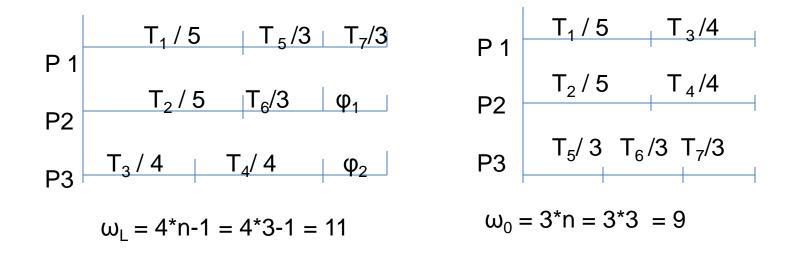
- For n = 1, then ω' is never greater than ω
- For n > 1, ω' can be greater than ω even though n' is very high
- For n = n' the ratio ω' / ω goes to (2-1/n)

Theorem 2: When no precedence constraints exist

- Tasks can execute when ready
- Consider r tasks
- Let ω_L be the finishing time for the task set
- Let ω_0 be the minimum possible finishing time
- Algo: A free processor always starts to execute the longest unexecuted task
- Then the best possible bound is $\omega_L \le \omega_0$ ((4/3) 1/n)

An example

- Let n = 3,
- Num tasks = r= 2*n + 1 = 7
- $T = (T_1, T_2, T_3, T_4, T_5, T_6, T_7)$ with execution times
- $\mu = (5, 5, 4, 4, 3, 3, 3)$



Task set

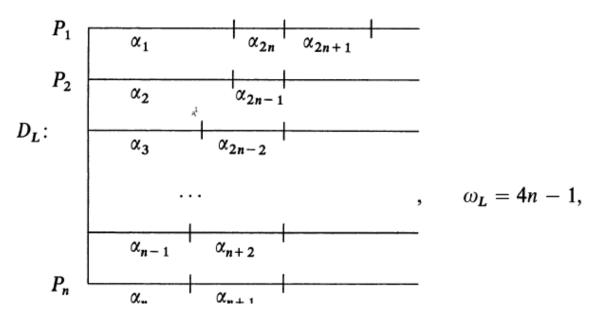
To show that this bound is best possible, we consider the following set of task lengths: $\alpha_i = \mu(T_i)$

$$(\alpha_1, \alpha_2, \cdots, \alpha_r) = (2n - 1, 2n - 1, 2n - 2, 2n - 2, \cdots, n + 1, n + 1, n, n, n),$$

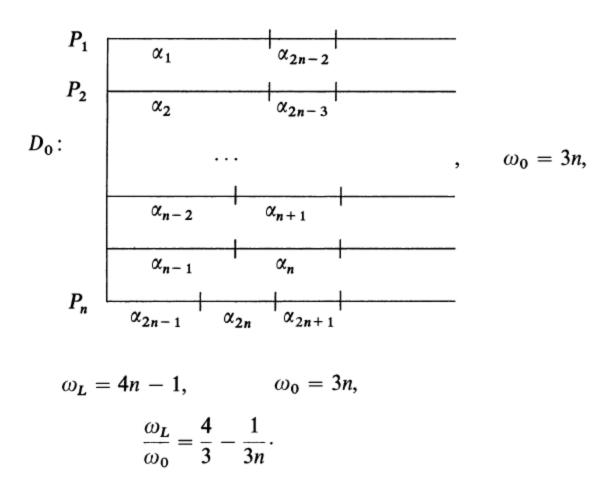
where r = 2n + 1. Specifically we have

$$\alpha_k = 2n - \left[\frac{k+1}{2}\right], \quad k = 1, \cdots, 2n, \text{ and } \alpha_{2n+1} = n.$$

In this case



Example task set (contd..)



Theorem 3

- No precedence constraints
- For a integer k ≥0, chose k longest tasks of the task set T = {T₁,T₂ T_r}
- Arrange them in a list L to get the optimal solution ω_k for the k tasks
- Extend L to a sequence containing all remaining r-k tasks by adjoining them arbitrarily to form the the list L(k)
- Let ω(k) denote the finishing time of this task set

Theorem 3 (Contd..)

- Let ω_0 denote the min possible finishing time
- Then

$$\frac{\omega(k)}{\omega_0} \leq 1 + \frac{1 - 1/n}{1 + [k/n]}$$

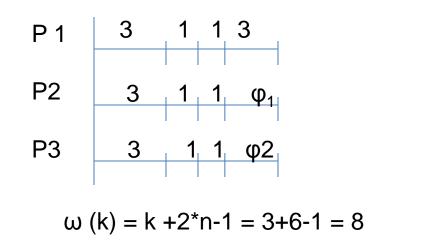
This bound is best possible for $k=0 \pmod{n}$ Note : If k = 0 then

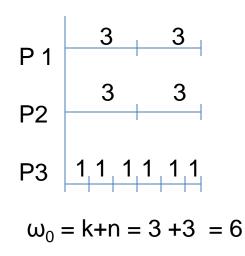
$$\frac{\omega(0)}{\omega_0} \le 2 - \frac{1}{n}$$

As in theorem 1 for n=n'

An example

- Let n = 3, k=3
- Numtasks = $r = k+1 + n^*(n-1) = 4+6 = 10$
- $\mu = (3,3,3,3,1,1,1,1,1,1)$





An example task set

To show that this bound is best possible when $k \equiv 0 \pmod{n}$ we present the following example: Define α_i for $1 \leq i \leq k + 1 + n(n - 1)$ by

$$\alpha_i = \begin{cases} n \text{ for } 1 \leq i \leq k+1, \\ 1 \text{ for } k+2 \leq i \leq k+1+n(n-1). \end{cases}$$

For this set of tasks and the list $L(k) = (T_1, \dots, T_k, T_{k+2}, \dots, T_{k+1+n(n-1)}, T_{k+1})$ we have $\omega(k) = k + 2n - 1$. Since $\omega_0 = k + n$,

$$\frac{\omega(k)}{\omega_0} = \frac{k+2n-1}{k+n} = 1 + \frac{n-1}{k+n} = 1 + \frac{1-1/n}{1+k/n} = 1 + \frac{1-1/n}{1+[k/n]}.$$

- Let n = 3
- Let k = 3
- Let r = 10 (No of tasks = k+1+n*(n-1))

End-notes

- This paper was presented in 1969 in the SIAM (Society for Industrial and Applied Mathematics) Journal on Applied Mathematics
- A Sequel to this was presented in 1972 by the same author
- Presented some anomalies
- Provided some algorithms for tasks assignments to processors and these could be used in different fields.