
Bounds on Multiprocessing

Timing Anomalies

R. L. Graham

Presented by

Dakshina Dasari

Outline of the presentation

• Introduction

• System model

• Examples of Anomalies in multiprocessors

• Bounds for some cases

• Conclusion

Introduction

• More resources to increase speed of
processing : Employ multiprocessors

• Minimize dependency between tasks to
exploit parallelism

• Generally true, but some exceptions (or
anomalies do exist)

• Good to know about these exceptions when
we allocate resources

System Model

– N identical processing units Pi {i=1..n}
– Set of tasks Ti {i=1..n}
– Partial order < on T

• If Ti < Tj then Ti cannot be started until Tj has been
completed.

– Function μ : T→(0,∞)
• Task Tj takes μ(Tj) units of time

– Tasks are run to completion and not interrupted
– Sequence L = (Ti1,. . . , Tir) contains Tasks ready to be

executed . Also called priority list

System description

• Processors : scan the list when idle

• Search for tasks which are ready to be
executed

– Have no precedence constraints
– 2 processors scan list L together ?

• Assign task to the processor with the smaller index

• If no tasks ready processors becomes idle
– (We say that it executes an empty task φ)

• Finishing time ω : Time at which all tasks are
completed

Example to illustrate anomalies

Decreasing computation times

Relaxation of precedence constraints

Increasing the number of processors

Observations

• The finishing time can increased even after
– Relaxing the precedence constraints
– Increasing the number of processors or
– Decreasing the computation time

Theorem 1

Case 1 :

• Given a set of T tasks

• A function μ , a partial order <

• A list L , n identical processors,

• ω the finishing time for this task set

Case 2 :

• Given the same set T of tasks as in Case 1

• A function μ′ ≤ μ , a partial order <′ which is a subset of <

• A list L′, n′ identical processors,

• ω′ the finishing time for this task set

Then ω′ ≤ ω (1+(n-1)/n′)

Some observations

sum (in time units) of empty tasks

Proof of the theorem

Theorem 1 (Contd..)

ω′ ≤ ω(1+(n-1)/n′)

• For n = 1, then ω′ is never greater than ω

• For n > 1, ω′ can be greater than ω even

though n′ is very high

• For n = n′ the ratio ω′/ ω goes to (2-1/n)

Theorem 2: When no precedence
constraints exist

• Tasks can execute when ready

• Consider r tasks

• Let ωL be the finishing time for the task set

• Let ω0 be the minimum possible finishing time

• Algo: A free processor always starts to execute

the longest unexecuted task

• Then the best possible bound is

ωL ≤ ω0 ((4/3) - 1/n)

An example

• Let n = 3,

• Num tasks = r= 2*n + 1 = 7

• T= (T1,T2, T3, T4,T5,T6,T7) with execution times

• μ = (5, 5 , 4 , 4, 3, 3, 3)

T1 / 5 T 5 /3 T7/3

P 1

P2

P3

T2 / 5 T6/3 φ1

T3 / 4 T4/ 4 φ2

ωL = 4*n-1 = 4*3-1 = 11

P 1

P2

P3

T1 / 5 T 3 /4

T2 / 5 T 4 /4

T5/ 3 T6 /3 T7/3

ω0 = 3*n = 3*3 = 9

Task set

Example task set (contd..)

Theorem 3

• No precedence constraints

• For a integer k ≥0, chose k longest tasks of the
task set T = {T1,T2 Tr)

• Arrange them in a list L to get the optimal
solution ωk for the k tasks

• Extend L to a sequence containing all
remaining r-k tasks by adjoining them
arbitrarily to form the the list L(k)

• Let ω(k) denote the finishing time of this task
set

Theorem 3 (Contd..)

• Let ω0 denote the min possible finishing time

• Then

This bound is best possible for k=0(mod n)

Note : If k = 0 then

As in theorem 1 for n=n´

An example

• Let n = 3, k=3

• Numtasks = r= k+1 + n*(n – 1) = 4+6 = 10

• μ = (3,3,3,3,1,1,1,1,1,1)

3 1 1 3

ω (k) = k +2*n-1 = 3+6-1 = 8

P 1

P2

P3

3 3

ω0 = k+n = 3 +3 = 6

3 1 1 φ1

3 1 1 φ2

P 1

P2

P3

3 3

1 1 1 1 1 1

An example task set

• Let n = 3

• Let k = 3

• Let r = 10 (No of tasks = k+1+n*(n-1))

End-notes

• This paper was presented in 1969 in the SIAM

(Society for Industrial and Applied Mathematics) Journal on
Applied Mathematics

• A Sequel to this was presented in 1972 by the same author

• Presented some anomalies

• Provided some algorithms for tasks assignments to processors

and these could be used in different fields.

