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The basics



  

Periodic tasks

● Characterised by:
● period (T)
● worst-case execution 

time (C)
●  relative deadline (D)



  

Sporadic tasks

● Characterised by:
● minimum inter-arrival 

time (T)
● worst-case execution 

time (C)
●  relative deadline (D)



  

Aperiodic tasks

● Characterised by:
● single-shot
● unknown arrival time
● worst-case execution 

time (C)
●  relative deadline (D)



  

The problem

● Periodic and sporadic tasks are tame...
● … but aperiodic tasks are far too unpredictable!



  

Dealing with it

● Aperiodic tasks executing with background 
priority... :-(
● Executing on spare time.

● Use of execution-time servers... :-)
● Minimum bandwidth assured.



  

Execution-time servers



  

Execution-Time Servers

● Characterised by:
● budget – execution time guaranteed for clients
● replenishment period – time to replenish the budget

● Servers require clients to register first!



  

Deferrable server

● Budget is replenished at the beginning of each 
period.
● Foreground priority while budget is not depleted.

● Budget become exhausted.
● Background priority until next replenishment.



  

Sporadic server (POSIX)

● A client is released at instant t...
● executes c inside budget: at t+T budget is 

increased c
● budget is exhausted: wait until replenishment
● executes x and depletes budget: wait for next 

replenishment, and at t+T budget is increased x



  

Ada 2005 execution-time 
mechanisms



  

Timing events

● Events triggered by 
the progression of the 
system clock.

● A handler is executed 
when the associated 
time is reached.



  

Execution Time Clocks

● Mechanism that 
measures the time 
spent by the system 
executing a task and 
services on its behalf.

● Must measure up to 
50 years with a 
maximum granularity 
of 1 ms.



  

Execution Time Timers

● A “one-shot” event 
triggered that 
executes code when 
the execution time of 
a task reaches a 
specified value.



  

Group Budgets

● Allows to create execution-time servers.
● Permits to group tasks...
● Allocate the group an amount of CPU time...
● Set a handler to execute when group budget is 

exhausted...
● Replenish the budget...
● Check out the group members and available 

budget...



  

Building servers in Ada 2005



  

Deferrable server

● Group Budget keeps track of group CPU time 
consumed.

● Single Timing Event signals replenishment 
periods.



  

Deferrable server
Adding a task

procedure Register(T : Task_Id := Current_Task) is 
begin
 if First then
  First := False;
  G_Budget.Add(Params.Budget);
  T_Event.Set_Handler(Params.Period,Timer_Handler’Access);
  G_Budget.Set_Handler(Group_Handler’Access);
 end if;

 G_Budget.Add_Task(T);

 if G_Budget.Budget_Has_Expired then
  Set_Priority(Params.Background_Pri, T);
 else
  Set_Priority(Params.Foreground_Pri, T);
 end if;
end Register;



  

Deferrable server
Replenishing budget

procedure Timer_Handler(E : in out Timing_Event) is
 T_Array : Task_Array := G_Budget.Members;
begin
 G_Budget.Replenish(Params.Budget);

 for I in T_Array’range loop
  Set_Priority(Params.Foreground_Pri,T_Array(I));
 end loop;

 E.Set_Handler(Params.Period,Timer_Handler’Access);
end Timer_Handler;



  

Deferrable server
Managing budget exhaustion

procedure Group_Handler(G : in out Group_Budget) is
 T_Array : Task_Array := G_Budget.Members;
begin

 for I in T_Array’range loop
  Set_Priority(Params.Background_Pri,T_Array(I));
 end loop;
end Group_Handler;



  

Sporadic server

● Server deals with a single task (in the example).
● The task release mechanism is embedded in the 

server.

● Group Budget keeps track of group CPU time 
consumed.

● Multiple Timing Events signals replenishment 
periods.
● Each Timing Event must know the amount of 

budget that must be returned.



  

Sporadic server
_The_ task

task body Sporadic_Task is
begin
 Sporadic_Controller.Register;

 loop
  Sporadic_Controller.Wait_For_Next_Invocation;
  -- undertake the work of the task
 end loop;

end Sporadic_Task;;



  

Sporadic server
Adding a task

procedure Register(T : Task_Id := Current_Task) is
begin
 G_Budget.Add_Task(T);

 G_Budget.Add(Params.Budget);
 G_Budget.Set_Handler(Group_Handler’Access);

 Release_Time := Clock;
 Start_Budget := Params.Budget;
end Register;



  

Sporadic server
Releasing task

procedure Release_Sporadic is
begin
 Barrier := True;
end Release_Sporadic;

entry Wait_For when Barrier is
begin
 if not G_Budget.Budget_Has_Expired then
  Release_Time := Clock;
  Start_Budget := G_Budget.Budget_Remaining;
  Set_Priority(Params.Foreground_Pri,ID);
 end if;

 Barrier := False;
 Task_Executing := True;
end Wait_For;



  

Sporadic server
Task finishes execution

entry Wait_For_Next_Invocation when True is
begin
 -- work out how much budget used, construct
 -- the timing event and set the handler
 Start_Budget := Start_Budget – G_Budget.Budget_Remaining;

 TB_Event := new Budget_Event;
 TB_Event.Bud := Start_Budget;
 TB_Event.Set_Handler(Release_Time+Params.Period,
                      Timer_Handler’Access);

 Task_Executing := False;
 requeue Wait_For with abort;
end Wait_For_Next_Invocation;



  

Sporadic server
Replenishing budget

procedure Timer_Handler(E : in out Timing_Event) is
 Bud : Time_Span;
begin
 Bud := Budget_Event(Timing_Event’Class(E)).Bud;

 if G_Budget.Budget_Has_Expired and Task_Executing then
  Release_Time := Clock;
  Start_Budget := Bud;
  G_Budget.Replenish(Bud);
  Set_Priority(Params.Foreground_Pri,ID);
 elsif not G_Budget.Budget_Has_Expired and
       Task_Executing then
  G_Budget.Add(Bud);
  Start_Budget := Start_Budget + Bud;
 else
  G_Budget.Add(Bud);
 end if;
end Timer_Handler;



  

Sporadic server
Managing budget exhaustion

procedure Group_Handler(G : in out Group_Budget) is
begin
 -- a replenish event required for the used budget

 TB_Event := new Budget_Event;
 TB_Event.Bud := Start_Budget;
 TB_Event.Set_Handler(Release_Time+Params.Period,
                      Timer_Handler’Access);

 Set_Priority(Params.Background_Pri,ID);

 Start_Budget := Time_Span_Zero;
end Group_Handler;



  

Conclusions

● Ada 2005 includes the mechanisms to build 
execution-time servers in the standard...
● … as long as the run-time supports them.



  

Thanks for your attention!
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