

Programming Execution-Time Servers
in Ada 2005

by Alan Burns and Andy Wellings

presented at the RTSS 2006

Seminar by António Barros

Presentation outline

● The basics
● Execution-time servers

● Deferrable server
● Sporadic server

● Ada 2005 execution-time mechanisms
● Building servers in Ada 2005
● Conclusions

The basics

Periodic tasks

● Characterised by:
● period (T)
● worst-case execution

time (C)
● relative deadline (D)

Sporadic tasks

● Characterised by:
● minimum inter-arrival

time (T)
● worst-case execution

time (C)
● relative deadline (D)

Aperiodic tasks

● Characterised by:
● single-shot
● unknown arrival time
● worst-case execution

time (C)
● relative deadline (D)

The problem

● Periodic and sporadic tasks are tame...
● … but aperiodic tasks are far too unpredictable!

Dealing with it

● Aperiodic tasks executing with background
priority... :-(
● Executing on spare time.

● Use of execution-time servers... :-)
● Minimum bandwidth assured.

Execution-time servers

Execution-Time Servers

● Characterised by:
● budget – execution time guaranteed for clients
● replenishment period – time to replenish the budget

● Servers require clients to register first!

Deferrable server

● Budget is replenished at the beginning of each
period.
● Foreground priority while budget is not depleted.

● Budget become exhausted.
● Background priority until next replenishment.

Sporadic server (POSIX)

● A client is released at instant t...
● executes c inside budget: at t+T budget is

increased c
● budget is exhausted: wait until replenishment
● executes x and depletes budget: wait for next

replenishment, and at t+T budget is increased x

Ada 2005 execution-time
mechanisms

Timing events

● Events triggered by
the progression of the
system clock.

● A handler is executed
when the associated
time is reached.

Execution Time Clocks

● Mechanism that
measures the time
spent by the system
executing a task and
services on its behalf.

● Must measure up to
50 years with a
maximum granularity
of 1 ms.

Execution Time Timers

● A “one-shot” event
triggered that
executes code when
the execution time of
a task reaches a
specified value.

Group Budgets

● Allows to create execution-time servers.
● Permits to group tasks...
● Allocate the group an amount of CPU time...
● Set a handler to execute when group budget is

exhausted...
● Replenish the budget...
● Check out the group members and available

budget...

Building servers in Ada 2005

Deferrable server

● Group Budget keeps track of group CPU time
consumed.

● Single Timing Event signals replenishment
periods.

Deferrable server
Adding a task

procedure Register(T : Task_Id := Current_Task) is
begin
 if First then
 First := False;
 G_Budget.Add(Params.Budget);
 T_Event.Set_Handler(Params.Period,Timer_Handler’Access);
 G_Budget.Set_Handler(Group_Handler’Access);
 end if;

 G_Budget.Add_Task(T);

 if G_Budget.Budget_Has_Expired then
 Set_Priority(Params.Background_Pri, T);
 else
 Set_Priority(Params.Foreground_Pri, T);
 end if;
end Register;

Deferrable server
Replenishing budget

procedure Timer_Handler(E : in out Timing_Event) is
 T_Array : Task_Array := G_Budget.Members;
begin
 G_Budget.Replenish(Params.Budget);

 for I in T_Array’range loop
 Set_Priority(Params.Foreground_Pri,T_Array(I));
 end loop;

 E.Set_Handler(Params.Period,Timer_Handler’Access);
end Timer_Handler;

Deferrable server
Managing budget exhaustion

procedure Group_Handler(G : in out Group_Budget) is
 T_Array : Task_Array := G_Budget.Members;
begin

 for I in T_Array’range loop
 Set_Priority(Params.Background_Pri,T_Array(I));
 end loop;
end Group_Handler;

Sporadic server

● Server deals with a single task (in the example).
● The task release mechanism is embedded in the

server.

● Group Budget keeps track of group CPU time
consumed.

● Multiple Timing Events signals replenishment
periods.
● Each Timing Event must know the amount of

budget that must be returned.

Sporadic server
The task

task body Sporadic_Task is
begin
 Sporadic_Controller.Register;

 loop
 Sporadic_Controller.Wait_For_Next_Invocation;
 -- undertake the work of the task
 end loop;

end Sporadic_Task;;

Sporadic server
Adding a task

procedure Register(T : Task_Id := Current_Task) is
begin
 G_Budget.Add_Task(T);

 G_Budget.Add(Params.Budget);
 G_Budget.Set_Handler(Group_Handler’Access);

 Release_Time := Clock;
 Start_Budget := Params.Budget;
end Register;

Sporadic server
Releasing task

procedure Release_Sporadic is
begin
 Barrier := True;
end Release_Sporadic;

entry Wait_For when Barrier is
begin
 if not G_Budget.Budget_Has_Expired then
 Release_Time := Clock;
 Start_Budget := G_Budget.Budget_Remaining;
 Set_Priority(Params.Foreground_Pri,ID);
 end if;

 Barrier := False;
 Task_Executing := True;
end Wait_For;

Sporadic server
Task finishes execution

entry Wait_For_Next_Invocation when True is
begin
 -- work out how much budget used, construct
 -- the timing event and set the handler
 Start_Budget := Start_Budget – G_Budget.Budget_Remaining;

 TB_Event := new Budget_Event;
 TB_Event.Bud := Start_Budget;
 TB_Event.Set_Handler(Release_Time+Params.Period,
 Timer_Handler’Access);

 Task_Executing := False;
 requeue Wait_For with abort;
end Wait_For_Next_Invocation;

Sporadic server
Replenishing budget

procedure Timer_Handler(E : in out Timing_Event) is
 Bud : Time_Span;
begin
 Bud := Budget_Event(Timing_Event’Class(E)).Bud;

 if G_Budget.Budget_Has_Expired and Task_Executing then
 Release_Time := Clock;
 Start_Budget := Bud;
 G_Budget.Replenish(Bud);
 Set_Priority(Params.Foreground_Pri,ID);
 elsif not G_Budget.Budget_Has_Expired and
 Task_Executing then
 G_Budget.Add(Bud);
 Start_Budget := Start_Budget + Bud;
 else
 G_Budget.Add(Bud);
 end if;
end Timer_Handler;

Sporadic server
Managing budget exhaustion

procedure Group_Handler(G : in out Group_Budget) is
begin
 -- a replenish event required for the used budget

 TB_Event := new Budget_Event;
 TB_Event.Bud := Start_Budget;
 TB_Event.Set_Handler(Release_Time+Params.Period,
 Timer_Handler’Access);

 Set_Priority(Params.Background_Pri,ID);

 Start_Budget := Time_Span_Zero;
end Group_Handler;

Conclusions

● Ada 2005 includes the mechanisms to build
execution-time servers in the standard...
● … as long as the run-time supports them.

Thanks for your attention!

	Diapositivo 1
	Diapositivo 2
	Diapositivo 3
	Diapositivo 4
	Diapositivo 5
	Diapositivo 6
	Diapositivo 7
	Diapositivo 8
	Diapositivo 9
	Diapositivo 10
	Diapositivo 11
	Diapositivo 12
	Diapositivo 13
	Diapositivo 14
	Diapositivo 15
	Diapositivo 16
	Diapositivo 17
	Diapositivo 18
	Diapositivo 19
	Diapositivo 20
	Diapositivo 21
	Diapositivo 22
	Diapositivo 23
	Diapositivo 24
	Diapositivo 25
	Diapositivo 26
	Diapositivo 27
	Diapositivo 28
	Diapositivo 29
	Diapositivo 30
	Diapositivo 31

