
Analyzing  the Contention 
on the shared memory bus for 

COTS-Based Multicores

Presented by 

Dakshina Dasari

29 April 2011

CISTER SEMINAR SERIES 



Agenda

Motivation

Problem of 
shared low 

level 
resources

Proposed 
Method

Future work

2



COTS-based Multicores

Increasingly used in 
embedded systems

• Low power,  high 
computing capabilities

• Faster to design and 
market

Finding WCET in 
multicores difficult

• COTS: Undocumented 
parameters

• COTS:  Not predictable

• Shared resource 
contention (low-level)

• Uniprocessor theories 
developed not 
applicable

3
COTS: Commercial-off -the -shelf



Implications

• Usage of very simple models in research

– Do not reflect underlying hardware 

• Generalized assumptions

– Non tight WCET estimates

The industry trend does not seem to be towards

building predictable systems  

But performance oriented systems 

4



South Bridge
(I/O Controller Hub)

L1 cache L1 cache

Core 1 

L1 cache L1 cache

Core 2 

L1 cache L1 cache

Core  m 

Shared L2 Cache  

. .  .

Memory  Controller

North Bridge

System 
Memory

Graphics
Controller 

Front Side Bus 

Direct Media Interface 

Other  Interconnects  
and  Peripherals 

Mouse

Keyboard

Asynchronous  
I/O

Audio 
Device

Other 
Streaming 

Devices

Isochronous 
I/O

Memory  Arbiter



Task  A 

Shared resource contention

8

Memory 

Task  B  

North Bridge 

L1  cache L1  cache

Core 1 Core  2 

L1  cache

Core  m  

Front Side Bus

South Bridge 

Peripherals

Task  Z  

REQ

RSP



Task  A 

Shared resource contention

9

Memory 

Task  B  

North Bridge 

L1  cache L1  cache

Core 1 Core  2 
L1  cache

Core  m  

Contention for the                     
Front Side Bus

South Bridge 

Peripherals

Task  Z  



Task  A 

Shared resource contention

10

Memory 

Task  B  

Memory controller
Memory arbiter 

L1  cache L1  cache

Core 1 Core  2 
L1  cache

Core  m  

Front Side Bus

South Bridge 

Peripherals

Task  Z  

Contention in the memory controller 



Nondeterminism in computing 
accurate WCET 

• Total Time  for a request  =  
T_FSB +          // FSB contention
T_FSB_NB +  // transmission over FSB
T_NB // NB contention 
T_NB_MEM +  // tx time 
T_MEM +  //memory access time
T_MEM_NB + // tx time
T_NB_FSB     // tx time

Nontrivial to accurately determine : T_FSB, T_NB and 
T_MEM 

11



Issues

Non-accuracy due to some undocumented 
parameters : 

 Size of buffers in NB not  stated

 Arbitration algorithm in the NB is vendor 
proprietary

 Memory access time is variable  for each 
request  and dependent on memory access 
scheduling  techiques

12



South Bridge
(I/O Controller Hub)

L1 cache L1 cache

Core 1 

L1 cache L1 cache

Core 2 

L1 cache L1 cache

Core  m 

Shared L2 Cache  

. .  .

Memory  Controller

North Bridge

System 
Memory

Graphics
Controller 

Front Side Bus 

Direct Media Interface 

Other  Interconnects  
and  Peripherals 

Mouse

Keyboard

Asynchronous  
I/O

Audio 
Device

Other 
Streaming 

Devices

Isochronous 
I/O

Memory  Arbiter



Contention in the FSB

• Resolved using a Round Round Algorithm 

– (Disclaimer :  wrt to intel processors)

– Fairness : Order of transmission is fixed apriori (1-
2-3-4-1)

– Bus owner parks onto the bus  until other owners 
assert the bus-request line

• To Reduce switching overhead 

– Non-idling:  A bus owner can  keep transmitting 
when other cores do not transmit 

14



South Bridge
(I/O Controller Hub)

L1 cache L1 cache

Core 1 

L1 cache L1 cache

Core 2 

L1 cache L1 cache

Core  m 

Shared L2 Cache  

. .  .

Memory  Controller

North Bridge

System 
Memory

Graphics
Controller 

Front Side Bus 

Direct Media Interface 

Other  Interconnects  
and  Peripherals 

Mouse

Keyboard

Asynchronous  
I/O

Audio 
Device

Other 
Streaming 

Devices

Isochronous 
I/O

Memory  Arbiter



Contention in the North Bridge

16

Request Type Service slots  (system cycles)

DRAM Maintenance Requests  
(Refresh)

X                     (High Priority  = 1  )

Display (Isochronous) Y

Streaming (Isochronous) Z

CPU (Asynchronous) W

Total =  N system cycles

• Schedule period  repeats  after every N cycles  

• Flexible, Slot based mechanism

• Tries to  meet  QoS requirements of Isochronous (Periodic requests) 
with  low-latency requirements of  Asynchronous requests 



Contention in the North Bridge

17

Request Type Service slots  (system cycles)

DRAM Maintenance Requests  
(Refresh)

X                     (High Priority  = 1  )

Display (Isochronous) Y

Streaming (Isochronous) Z

CPU (Asynchronous) W

Total =  N system cycles

• Flexible  but non-predictable

• Weights assigned to request types not specified

• Difficult to accurately compute  an upper-bound   



Nondeterminism in computing 
accurate WCET 

• Total Time  for a request  =  
T_FSB +          // FSB contention
T_FSB_NB +  // transmission over FSB
T_NB // NB contention 
T_NB_MEM +  // tx time 
T_MEM +  //memory access time
T_MEM_NB + // tx time
T_NB_FSB     // tx time

Nontrivial to accurately determine : T_FSB, T_NB and 
T_MEM 

18



Summary of the discussion

• Method to obtain maximum time to service a 
request  (TR)  by  adding individual factors 
difficult

• Workaround : 

– Measure end to end latency  for a large number 
of requests

– Record the maximum value

– Use this value for WCET estimation 

19



Problem Definition

 Compute  the  WCET  of a task,  considering contention 
on the bus on ,  given  the following : 

 WCET in isolation  
 A multicore system with
 Private caches : Cores do not share the cache 
 Shared front side bus with Round Robin Bus Arbitration 

Algorithm

 Task model
 Non pre-emptive   (Tasks run uninterrupted)

 No Cache Related Pre-emption Delay  and context switch 
overhead 

 Constrained deadline ( Di <= Ti )  Periodic tasks    
 Partitioned scheduling  (Tasks do not migrate )

20



Round Robin algorithm

21

No blocking from other tasks



Round Robin algorithm

22

No blocking from other tasks

Ci
mix      =   Ci

iso

where 
TR: Time to serve a request
Ci

iso :WCET in isolation
Ci

mix  :WCET  when run with  other tasks



Round Robin algorithm

23

No blocking from other tasks

Blocked by  7 requests



Round Robin algorithm

24

Blocked by  7 requests

Ci
mix      =   Ci

iso +  7 * TR 
where 
TR: Time to serve a request
Ci

iso :WCET in isolation
Ci

mix  :WCET  when run with  other tasks



Round Robin algorithm

25

No blocking from other tasks

Blocked by  7 requests

Worst case Blocked by  9 requests



Round Robin algorithm

26

Worst case Blocked by  9 requests

Ci
mix      =   Ci

iso +  9 * TR 
where 
TR:   Time to serve a request
Ci

iso : WCET in isolation
Ci

mix  : WCET  when run with  other tasks



Round Robin algorithm

27

Worst case Blocked by  9 requests

Ci
mix      =   Ci

iso +  9 * TR 
where 
TR:   Time to serve a request
Ci

iso : WCET in isolation
Ci

mix  : WCET  when run with  other tasks
m : number of cores
RQSTi(t) : Requests generated by task i in time t

Ci
mix      =   Ci

iso +   RQSTi(Ci
iso ) * (m-1) * TR



Round Robin algorithm

28

Worst case Blocked by  #Max  =  (m-1) *  RQSTi(Ci
iso )  requests

Ci
mix      =   Ci

iso +   RQSTi(Ci
iso ) * (m-1) * TR

Very pessimistic !! 

 Tasks on other cores  may  not  generate  #Max  requests
 There may be no tasks scheduled on the other cores



Round Robin algorithm

29

Worst case Blocked by  Max  =  (m-1) *  RQSTi(Ci
iso ) 

requests

Ci
mix      =   Ci

iso +   RQSTi(Ci
iso ) * (m-1) * TR

Very pessimistic !! 
 Ex :  Task i generates 2000 requests    RQSTi(Ci

iso ) = 2000 
 Co-scheduled tasks on other cores generate 20 requests
 By the bound Ci

mix      =   Ci
iso +   2000* (3) * TR

 Actual  : Ci
mix      =   Ci

iso +   20 * TR



Round Robin algorithm

30

Pessimistic bound:
Ci

mix =   Ci
iso +   RQSTi(Ci

iso ) * (m-1) * TR

For tighter WCET bounds we need:  
Ci

mix      =   Ci
iso +    Requests_from_other_cores *  TR

(during execution of  task i) 

We need a Per-Core  Request Estimator Function 



Round Robin algorithm

31

Ci
mix      =   Ci

iso +    Requests_from_other_cores *  TR
(during execution of  task i) 

We need a Per-Core  Request Estimator Function 

PCREj(t) :  Returns maximum number of  requests  
generated  by tasks  scheduled on core  ‘j’  during time  

interval  ‘t’



The Method 

32

At time 0 
PCRE2(0) = PCRE3(0) = PCRE4(0) = 0  
m  = 4  cores 
CA

iso = 4     TR =  0.05  
CA

mix = 4 

Interference queue of length  =   (m-1) * RQSTA(CA
iso)  = 3 * 3  = 9 slots  

ADVERSARY 

Core 1 Core 2 Core3 Core4

Task A



The Method 

33

At time 0 
PCRE2(0) = PCRE3(0) = PCRE4(0) = 0  
m  = 4  cores 
CA

iso = 4     TR =  0.05  
CA

mix = 4 

Interference queue of length  =   (m-1) * RQSTA(CA
iso)  = 3 * 3  = 9 slots  

ADVERSARY 

Core 1 Core 2 Core3 Core4

Task A



The Method 

34

At time = 4
PCRE2(4) =  1 PCRE3(4) =  1 PCRE4(4) = 2 
m  = 4  cores 
CA

iso = 4     TR =  0.05
CA

mix = 4 +  4 *0.05   
=  4.20

Execution time  of task A increases 

Core 1 Core 2 Core3 Core4



The Method 

35

At time = 4.20
∆ : Increased execution time 

PCRE2(∆) = 0 PCRE3(∆) = 1 PCRE4(∆) = 0 
CA

iso = 4     TR =  0.05
CA

mix = 4.20 +  1 *0.05 
=  4.25

Execution time  of task A  further increases

Core 1 Core 2 Core3 Core4



The Method 

36

At time = 4.25
∆ : Increased execution time 

PCRE2(∆) = 0 PCRE3(∆) = 0  PCRE4(∆) = 0 
No more requests from other cores !!! 
CA

iso = 4     TR =  0.05
CA

mix = 4.25 +  0  
=  4.25

Final wcet =  4.25 

Core 1 Core 2 Core3 Core4



The algorithm 

Initialization Step

Ci
0 = Ci

iso

iqleni
0 =    RQSTi(Ci

0) * (m-1) 

external_rqsti
0 =    ∑ j≠ π(i) PCREj(Ci

0) 

blocking_rqst i
0 =  min(iqleni

0, external_rqsti
0)

Iteration Step 

Ci
k = Ci

k-1 *  blocking_rqst i
k-1 * TR 

iqleni
k = iqleni

k-1 - blocking_rqst i
k-1 

external_rqsti
k =    ∑ j≠ π(i) ( PCREj(Ci

k) - PCREj(Ci
k-1))

blocking_rqst i
k=  min(iqleni

k-1, external_rqsti
k-1)

Stopping Conditions :  

iqleni
k = 0                       RR Upper bound reached  

blocking_rqst i
k = 0        No more requests from other cores 

37



TB = 10

A

A
B

B A A A A ABBB B

TA = 8

CA=3   CB=5

RA=4    RB=7
Schedule 
repeats 
hereon

Request
Pattern 
of TS 

Task
Schedule
(TS)

Hyperperiod of Tasks set (A,B) = 40 

Per Core Request Estimator



TB = 10

A

A
B

B A A A A ABBB B

TA = 8

CA=3   CB=5

RA=4    RB=7

sliding window   of  t = 25
Schedule 
repeats 
hereon

Request
Pattern 
of TS 

Task
Schedule
(TS)

Hyperperiod of Tasks set (A,B) = 40 

Per Core Request Estimator



Obtaining request patterns

• PCRE(t) depends on the 

exact request pattern of the tasks

– Measurements  

• Performance monitoring counters 

• Special purpose registers in microprocessors

Reset  counter,  select event (like L1 cache misses) 

Code block  to be monitored 

Stop counter, Read values 

– Static analysis

41



System wide analysis

42

Compute 
PCR1

iso using CA
iso , CB

iso

PCR2
iso using Cc

iso , CD
iso

Compute 

PCR1
iso using

Compute 
CA

mix using PCR2
iso

CB
mix using PCR2

iso

Cc
mix using PCR1

iso

CD
mix using PCR1

iso

Tasks  A, B  assigned to core 1
Tasks  C, D assigned to  core 2 

Ck
iso = Ck

mix



System wide analysis

43

Increased execution does not increase      
number of requests  generated

Request density decreases . 
Therefore PCRi

iso(t) >=PCRi
mix(t)

Task A 

Why: 

Private caches
No extra cache misses

Non premptive tasks
No extra cache misses

Increase only due to bus 
contention



System wide analysis

44

Compute 
PCR1

iso using CA
iso , CB

iso

PCR2
iso using Cc

iso , CD
iso

Compute 

PCR1
iso using

Compute 
CA

iso using PCR2
iso

CB
iso using PCR2

iso

Cc
iso using PCR1

iso

CD
iso using PCR1

iso

Tasks  A, B  assigned to core 1
Tasks  C, D assigned to  core 2 



Other Related work carried out

• Response time analysis for an arbitration-
agnostic  bus contention algorithm for COTS-
based systems

• Measurement based framework for
generating a request profile for a task

– Uses performance monitoring counters

• Preliminary shared cache analysis

45



Future Work

• Reducing Bus Contention with resource-aware 
schedulers

• Addressing contention considering shared 
caches

• Addressing  Pre-emptive task models 

46


