
Carnegie Mellon

!"#$%"$#&

'($%&)%*+%,-&

!"#$%&'()*+

,--*)-%&.*+

/.*0%*1)*+

&.*/$&!"#$%0%$#$%&

&12%$134& 567&

2)*3)*+4.*+5#)*+%'')##+

6%&)0%7+8.1)+

9:1+8.1)+

567(&

8&

;.<$"=)*+

>)')"3)*+

!"#$"%&&'($))
*(+'"#(&,(-)

.(-,$"%/#()
0%1,")

23(/&,)
0%1,")

NanoCF:	 	
A	 Coordina*on	 Framework	 for	 Mul*ple	
Applica*ons	 on	 Sensor	 Networks	

Vikram	 Gupta,	 Eduardo	 Tovar,	 Luis	 Miguel	 Pinho	
Junsung	 Kim,	 Karthik	 Lakshmanan,	 Raj	 Rajkumar	

Carnegie Mellon

Macro-‐programming	 support	 	
 In-‐network	 programming	 	

 Why?	
  Usability	
  Lack	 of	 Technical	 ExperCse	 with	 non	 CS	 people	
  Cost	 of	 re-‐program-‐ability	
  Faster	 deployment	
  Heterogeneous	 Hardware/SoKware	

 Consider	 a	 network	 with	 hundreds	 of	 nodes	
  Few	 minutes	 per	 node	 can	 mean	 hours	

 More	 “QualitaCve”	 advantages	

2	

Carnegie Mellon

Sensor	 Network	 as	 Infrastructure	

3	

Carnegie Mellon

Occupancy	 Checking	 and	 Room	 Climate	
Control	

 Several	 applicaCons	 on	 same	 sensor	 network	
 Geographically	 distributed	 sensor	 network	
 Limited	 flexibility	 and	 usability	

4	

Carnegie Mellon

Challenges	 for	 Concurrent	 applicaCons	
 User	 Interface	

  Database	 queries,	 virtual	 machine	 etc..	
 OperaCng	 System	 Support	
 Packets	 through	 mulCple	 applicaCons	 over	 mulC-‐hop	
network	

 Data	 AggregaCon	
 Minimizing	 the	 overhead	

  Frequency	 of	 Processor	 and	 Radio	 On/Off	
  Network	 flooding	
  Seamless	 backend	 handling	

 Tradeoff	 between	 Control	 and	 AbstracCon	

5	

Carnegie Mellon

Macro	 Programming	 System	

6	

Source Code

Lexical
Analyzer

Parser
(Grammar
Analyzer)

Readable
Instructions

ByteCode
Stream

Data
handler

Code
Interpreter

Code
Interpreter

Code
Interpreter

 nanoCL:	 Small	
Composible	 Language	
for	 Sensor	 Networks	

 Abstracts	 away	 from	
lower-‐level	 details	

 Supports	 various	 data-‐
types	 and	 library	
funcCons	

 Independent	 of	 the	 type	
of	 sensor	 nodes	

Carnegie Mellon

System	 Architecture	

7	

Internet	

API:	 User	 code	

Dispatcher	

Job	 Handler	

Aggregator	

Data	 Handler	

Forwarder	

	 Code	 Interpreter	

	 FireFly	 WSN	

PC	

Gateway	 Node	

End	 Node	

WSNs	

…	

Parser:	 nclC	

Receiver	

Data	 Handler	

Carnegie Mellon

Control	 and	 Data	 Flow	

8	

Code	 Interpreter	

Sensor	 OperaCng	 System	

RUNTIME	

Forwarder	

Receiver	

Aggregator	 INTEGRATION	
LAYER	

Programming	 AbstracCon	

Compiler	 Aggregator	

PROGRAMMING	 	
ENVIRONMENT	

CONTROL DATA

Two-‐Fold	

Carnegie Mellon

System	 Architecture	 Outline	

9	

Internet	

API:	 User	 Code	

Dispatcher	

Job	 Handler	

Aggregator	

Data	 Handler	

Forwarder	

	 Code	 Interpreter	

	 FireFly	 WSN	

PC	

Gateway	 Node	

End	 Node	

WSNs	

…	

Parser:	 nclC	

Receiver	

Data	 Handler	

Carnegie Mellon

sMapReduce	 Programming	 AbstracCon	
 Natural-‐fit	 to	 sensor	 network	 operaCon	

  Map	 the	 “funcConality”	 to	 sensor	 node	
  Gather	 the	 data	 through	 the	 network	 tree	 (Reduce)	 	

 Inspired	 from	 Google’s	 MapReduce	

 Key	 Features	
  Balanced	 abstracCon	 and	 control	
  Easy	 debugging	
  Two-‐fold	 operaCon	

10	

Source Code

Lexical
Analyzer

Parser
(Grammar
Analyzer)

Readable
Instructions

ByteCode
Stream

Data
handler

Code
Interpreter

Code
Interpreter

Code
Interpreter

Carnegie Mellon

Simple	 Temperature	 CollecCon	 Example	
Table 1: List of programming constructs

Construct Details

list_of_nodes data structure containing the

list of nodes and their properties

smap_emit() Data to be returned

by each node

Function to read sensor

get() values into integers,

takes sensor name as argument

set() Function to set a GPIO Pin

clear() Clear a GPIO Pin

toggle() Toggle a GPIO Pin

Table 2: List of operators for selecting participating nodes

from among the list_of_nodes

Operators Details

LEAF. Nodes on the periphery of the network

INNER. All nodes except the leaf nodes

HOP(k). All nodes at kth
hop from the gateway

HAS(t). All nodes that have a t type sensor

BATT(c). All nodes having remaining

battery capacity of atleast c
CONN(n). Nodes having at least n neighbors

network. Code for this application consists of a for loop to

iterate through the list of nodes, an instruction using get()
to read the temperature reading and then an smap_emit()
to send the temperature reading along with the node id to-

wards the gateway.

The Reduce section of the program is used to specify the

aggregation scheme. A separate dedicated section in the

program to perform aggregation provides more freedom and

flexibility to implement data collection algorithms. The user

can assign aggregation responsibilities to different nodes in

the network tree. It makes it easier to overlay complex ag-

gregation algorithms over the tree through higher-level ab-

stractions for node addressing. This two-fold advantage is

made possible by separating the sensing operation from the

data-aggregation in sMap and Reduce sections. Figure 1b

shows an example of a reduce function for calculating the

sum of temperature readings obtained in the sMap section

in Figure 1a. In this example, INNER operator is used to

select non-leaf nodes and the sum of the input temperature

data is calculated over all nodes. Sum of these temperature

readings can be used to calculate a more useful parameter

such as average temperature at the gateway node. It is triv-

ial to compute commutative operations like sum, maximum,

minimum and count. Moreover, as a user can access the

nodes according to their physical location or logical location

in the network tree, more complex aggregations schemes can

be implemented as well.

3.1 A Target Tracking Example
Target tracking is a common application in sensor net-

works and requires considerable coordination between nodes.

We provide an implementation of target tracking using sig-

nal strength of beacons from a target node in order to demon-

strate the advantage of using sMapReduce. The application

logic is split into sMap and Reduce functions as shown in

1 smap(service name , l i s t o f n o d e s , per iod) {
2 for each node in l i s t o f n o d e s

3 temp value = ge t s (TEMP) ;

4 smap emit (temp value , node id) ;

5 end

(a) sMap Function

1 reduce (data , l i s t o f n o d e s) {
2 for each node in INNER. l i s t o f n o d e s

3 sum += data . temp value ; //AGGREGATION

4 end

5 return sum ;

6 }

(b) Reduce Function

Figure 1: A simple example for collecting maximum tem-

perature from a wireless sensor network

Figure 3. sMap function reads the Received Signal Strength

Indicator (RSSI) values from received packets as shown in

line 3 in Figure 3a. The reduce function in Figure 3b tri-

angulates the location of the target when an intermediate

node receives information packets from at least three chil-

dren nodes.

In the sMap function each node generates four values:

RSSI, corresponding time stamp, location of target and its

own ID, as shown in line 5 in Figure 3a. The Reduce function

receives these values from sMap, and evaluates an aggrega-

tion at all intermediate nodes. As shown in the example

topology in Figure 2, only node 6 is able to collect three val-

ues required for triangulation of the target node T tracked by

nodes 1, 2 and 3. The Reduce function in the example im-

plements the majority of the application logic because only

an intermediate node can process the RSSI information to

estimate the location of the target. The reduce function also

ascertains temporal correlation of RSSI values from different

nodes by checking whether the all time stamps are lie than

a window of size win (line 6, Figure 3b). It is evident from

this example that sMapReduce performs aggregation close to

the leaf nodes, reducing the communication and computa-

tion overhead near the gateway node. The triangulate()
function in line 8 calculates location of target node based

on RSSI values and coordinates of infrastructure nodes. Its

implementation is omitted for brevity purposes, as it does

not influence the goal or design of our proposed pattern.

Approaches like TinyDB do not capture sensing or topo-

logical modalities, as the aggregation is handled by an auto-

mated query planner. The design of application logic might

be simpler in TinyDB in many cases but sMapReduce allows

a programmer more control with an implicit understanding

of physical and logical location of nodes. More complex

schemes like Regiment do not isolate the functionality from

aggregation explicitly, which can complicate the application

logic with sensing job being undesirably coupled to various

points in the program.

3.2 Mapping Applications for Mobile Nodes
The sociometric badge [17] is an example sensor network

application that targets assisted-living scenarios. The in-

frastructure for such an application is expensive to main-

tain once the nodes have been distributed and deployed.

Adding additional features is likely to be impossible, and

11	

Two-‐Fold	

Carnegie Mellon

OperaCon	 to	 UI	 CorrelaCon	

12	

Programming	 AbstracCon	

Code	 Interpreter	

Sensor	 OS	

Parser	

Dispatcher	

Forwarder	

Receiver	

Aggregator	

Aggregator	

sMap
Plane
Behavior
Mapping Reduce

Plane
Aggregation

Carnegie Mellon

sMap	 and	 Reduce	 planes	

!"#$"%&&'($)*+,-"%./#()

0#12)3(-2"4"2-2")

52(,#")65)

!"#$%#&

'($)"*+,%#&

-.#/"#0%#&

1%+%(2%#&

344#%4"*.#&

344#%4"*.#&

,7%4)
!8%(2)

5%,"2(.#&
6"))(74& 921:.2)

!8%(2)

344#%4"8.7&

 LeK	 plane	 handles	 mapping	
the	 behavior	

 Right	 plane	 handles	 the	
aggregaCon	 of	 data	 through	
the	 network	 	

13	

Carnegie Mellon

Target	 tracking	 applicaCon	

14	

!" #"

$"

%" &"

'"

("

)"

*"

+

!"#$%"&'
()*$'

+),-.$'
/"01$#'

Figure 2: An example topology to demonstrate location
tracking of a target node

the lack of resources on specific nodes restricts the services
that they can offer. The presence of mobile nodes also adds
additional complexity with respect to node reprogramming
and data aggregation. The proposed programming pattern
sMapReduce, provides a flexible and extensible mechanism
to develop such systems, which could consist of both mo-
bile and static sensor nodes. In order to support such sys-
tems, sMapReduce introduces two new aspects: (i) multi-
level mapreduce function support, and (ii) periodic map ex-
ecution. This enables system designers to use sMapReduce
on sensor network systems with mobile nodes. Figure 4a
shows an example system, where a mobile node called Fire-
Fly badge [9], is used to build the above-mentioned assisted
living infrastructure. The FireFly badge could be hosting
two location-based applications: (i) emergency alarm that
needs to be loaded when the user is in a bathroom, and (ii)
a schedule reminder that needs to be loaded when the user
is in a living room. The smap_location function is executed
periodically, and it tracks the location of the FireFly badge
so that smap_location can map the corresponding applica-
tion to the badge. Then, smap_service, the second level
map function, will map schedule_reminder to the badge if
the user is in the living room and emergency_alarm if the
users is in the bathroom. Therefore, depending on the user
location, a different application can be dynamically mapped
on to the mobile node, and this enables programming of
context-sensitive map/reduce operations. This example thus
illustrates a simple scenario where the multi-level mapping
and periodic map execution features of sMapReduce can en-
able its use in networks with mobile nodes, where platforms
such as [16, 11, 12] cannot be easily applied.

3.3 Features
The design of the sMapReduce programming pattern is

based on the principle that typical sensor network operation
consists of two relatively disjoint functions. One associates
a behavior to sensor nodes and other executes data aggrega-
tion over the distributed network. Hence, dividing the user
program in explicit sMap and Reduce sections is a natural-
fit to sensor network operation. We provide below some
features of the pattern to emphasize on the design decisions
behind the sMapReduce.

Two-fold operation Typical sensor network operation con-
sists of programming of the nodes and collection of

1 smap(ta rg e t t r a ck , l i s t o f n o d e s , per iod) {
2 for each node in l i s t o f n o d e s
3 r s s i v = get (RSSI) ;
4 t s = get (time) ;
5 smap emit (r s s i v , ts , node id , l o c) ;
6 end

(a) sMap Function

1 reduce (data , l i s t o f n o d e s) {
2 for each node in INNER. l i s t o f n o d e s
3 i f (data . l o c != NULL)
4 return data . l o c ;
5 else
6 i f (max(t s)−min(t s)<=win
7 && s ize (data . r s s i v) >= 3)
8 t r i a n gu l a t e (r s s i v , l o c) ;
9 else

10 return data ;
11 end
12 end
13 end
14 }

(b) Reduce Function
Figure 3: A location tracking example using RSSI values
of packets received by infrastructure nodes from a mobile
target. An example topology for this application is provided
in Figure 2

data. These two are handled independently at dif-
ferent layers in the network. Further details of this
operation are provided in Section 4.

Data correlation A sensor network is a distributed sys-
tem where data of interest is the physical environment
itself. Therefore, any computation on data should
be conducted in the close neighborhood of the sensor
node.

Programmer Support Explicit division of programs into
sMap and Reduce sections allow the programmers to
easily isolate the key functions, thus helping in easy
inference and debugging of applications.

Balanced abstraction and control sMapReduce provides
easy to use libraries and abstractions to deploy large
scale applications in addition to the ability to address
individual nodes for fine-grained control to the user.

Expressiveness sMapReduce is a pattern derived from the
operation of a sensor network, and it allows the pro-
grammer to conveniently map behavior of sensing and
aggregation to network structure. The programmer
can leverage subtle optimizations without much com-
plexity in the application logic.

4. SYSTEM DESIGN
As previously stated, a typical operation of a sensor net-

work involves two major components; one handles the pro-
gramming of and coordination among nodes and another,
governs aggregation of data over the multi-hop network tree.
We can conceptualize this two-fold operation as two inde-
pendent planes that we call sMap plane and Reduce plane.

!" #"

$"

%" &"

'"

("

)"

*"

+

!"#$%"&'
()*$'

+),-.$'
/"01$#'

!" #"

$"

%" &"

'"

("

)"

*"

+

!"#$%"&'
()*$'

+),-.$'
/"01$#'

Figure 2: An example topology to demonstrate location
tracking of a target node

the lack of resources on specific nodes restricts the services
that they can offer. The presence of mobile nodes also adds
additional complexity with respect to node reprogramming
and data aggregation. The proposed programming pattern
sMapReduce, provides a flexible and extensible mechanism
to develop such systems, which could consist of both mo-
bile and static sensor nodes. In order to support such sys-
tems, sMapReduce introduces two new aspects: (i) multi-
level mapreduce function support, and (ii) periodic map ex-
ecution. This enables system designers to use sMapReduce
on sensor network systems with mobile nodes. Figure 4a
shows an example system, where a mobile node called Fire-
Fly badge [9], is used to build the above-mentioned assisted
living infrastructure. The FireFly badge could be hosting
two location-based applications: (i) emergency alarm that
needs to be loaded when the user is in a bathroom, and (ii)
a schedule reminder that needs to be loaded when the user
is in a living room. The smap_location function is executed
periodically, and it tracks the location of the FireFly badge
so that smap_location can map the corresponding applica-
tion to the badge. Then, smap_service, the second level
map function, will map schedule_reminder to the badge if
the user is in the living room and emergency_alarm if the
users is in the bathroom. Therefore, depending on the user
location, a different application can be dynamically mapped
on to the mobile node, and this enables programming of
context-sensitive map/reduce operations. This example thus
illustrates a simple scenario where the multi-level mapping
and periodic map execution features of sMapReduce can en-
able its use in networks with mobile nodes, where platforms
such as [16, 11, 12] cannot be easily applied.

3.3 Features
The design of the sMapReduce programming pattern is

based on the principle that typical sensor network operation
consists of two relatively disjoint functions. One associates
a behavior to sensor nodes and other executes data aggrega-
tion over the distributed network. Hence, dividing the user
program in explicit sMap and Reduce sections is a natural-
fit to sensor network operation. We provide below some
features of the pattern to emphasize on the design decisions
behind the sMapReduce.

Two-fold operation Typical sensor network operation con-
sists of programming of the nodes and collection of

1 smap(ta rg e t t r a ck , l i s t o f n o d e s , per iod) {
2 for each node in l i s t o f n o d e s
3 r s s i v = get (RSSI) ;
4 t s = get (time) ;
5 smap emit (r s s i v , ts , node id , l o c) ;
6 end

(a) sMap Function

1 reduce (data , l i s t o f n o d e s) {
2 for each node in INNER. l i s t o f n o d e s
3 i f (data . l o c != NULL)
4 return data . l o c ;
5 else
6 i f (max(t s)−min(t s)<=win
7 && s ize (data . r s s i v) >= 3)
8 t r i a n gu l a t e (r s s i v , l o c) ;
9 else

10 return data ;
11 end
12 end
13 end
14 }

(b) Reduce Function
Figure 3: A location tracking example using RSSI values
of packets received by infrastructure nodes from a mobile
target. An example topology for this application is provided
in Figure 2

data. These two are handled independently at dif-
ferent layers in the network. Further details of this
operation are provided in Section 4.

Data correlation A sensor network is a distributed sys-
tem where data of interest is the physical environment
itself. Therefore, any computation on data should
be conducted in the close neighborhood of the sensor
node.

Programmer Support Explicit division of programs into
sMap and Reduce sections allow the programmers to
easily isolate the key functions, thus helping in easy
inference and debugging of applications.

Balanced abstraction and control sMapReduce provides
easy to use libraries and abstractions to deploy large
scale applications in addition to the ability to address
individual nodes for fine-grained control to the user.

Expressiveness sMapReduce is a pattern derived from the
operation of a sensor network, and it allows the pro-
grammer to conveniently map behavior of sensing and
aggregation to network structure. The programmer
can leverage subtle optimizations without much com-
plexity in the application logic.

4. SYSTEM DESIGN
As previously stated, a typical operation of a sensor net-

work involves two major components; one handles the pro-
gramming of and coordination among nodes and another,
governs aggregation of data over the multi-hop network tree.
We can conceptualize this two-fold operation as two inde-
pendent planes that we call sMap plane and Reduce plane.

Carnegie Mellon

Write-‐ability	
 Simple	 C	 like	 syntax	
 Library	 funcCons	

  gets()	 for	 accessing	 sensor	 data	
  ArithmeCc	 operaCons	
  int/uint	 data	 types	
  set(), get(), toggle()	 for	 GPIO	 pins	
  for	 and	 while	 loops	
  if/else	 constructs	
  return	 values	 to	 collect	 data	 	

Carnegie Mellon

Source	 Lines	 of	 Code	 Comparison	

Application NanoCF Operating System
Temperature Collection 5 80

Occupancy Monitoring 20 205

Target Tracking 20 ~ 300 - 400

16	

Carnegie Mellon

17	

!""#$%&'()*(

+,-".#("/01/,-(

$,$023(20%#(20//#4"0$%&$1(!44#-5.6(768#20%#4(9#$#/,8#%(56(
$,$023(20-"&.#/(

JOB:
 dummyservice "1 2 3
 4 5" 100 MIN
ENDJOB

SERVICE:
 dummyservice int8
int8
 INIT:
 int8 aa
 int8 bb
 int8 cc
 ENDINIT
 aa = gets(TEMP)
 bb = gets(LIGHT)
 clt (LED RED)
 cc = (bb/100) +
 (aa/100)
 if(cc > 15)
 set(LED RED)
 print(cc)
 endif
 wait(100)
ENDSERVICE

No of Instructions:
35
 SECTION INIT
int8 a (aa)
int8 b (bb)
int8 c (cc)
int16 d
int16 e
int16 f
int16 g
int16 h
int16 i
int16 j
 ENDINIT
 SECTION SERVICE
GETS TEMP aa
GETS LIGHT bb
CLR LED RED
AEQ d 100
DIV e b d
AEQ f 100
DIV g a f
ADD h e g
MOV c h
AEQ i 15
GT c i
IF
GOTO 11
LABEL 12
AEQ j 100
WAIT j
ENDSERVICE
REPEAT 0x00 0x64
LABEL 11
SET LED RED
PRINT c
GOTO 12

0x56, 0x58, 0xff, 0xff,
0x5c, 0x60, 0x61, 0xff,
0x5c, 0x60, 0x62, 0xff,
0x5c, 0x60, 0x63, 0xff,
0x5c, 0x61, 0x64, 0xff,
0x5c, 0x61, 0x65, 0xff,
0x5c, 0x61, 0x66, 0xff,
0x5c, 0x61, 0x67, 0xff,
0x5c, 0x61, 0x68, 0xff,
0x5c, 0x61, 0x69, 0xff,
0x5c, 0x61, 0x6a, 0xff,
0x59, 0xff, 0xff, 0xff,
0x56, 0x5a, 0xff, 0xff,
0x30, 0x61, 0x90, 0x00,
0x30, 0x62, 0x96, 0xff,
0x41, 0x95, 0x03, 0xff,
0x16, 0x64, 0x00, 0x64,
0x1a, 0x65, 0x62, 0x64,
0x16, 0x66, 0x00, 0x64,
0x1a, 0x67, 0x61, 0x66,
0x0d, 0x68, 0x65, 0x67,
0x17, 0x63, 0x68, 0xff,
0x16, 0x69, 0x00, 0x0f,
0x11, 0xff, 0x63, 0x69,
0x51, 0xff, 0xff, 0xff,
0x53, 0x11, 0xff, 0xff,
0x54, 0x12, 0xff, 0xff,
0x16, 0x6a, 0x00, 0x64,
0x44, 0x6a, 0xff, 0xff,
0x5b, 0xff, 0xff, 0xff,
0x45, 0xff, 0x00, 0x64,
0x54, 0x11, 0xff, 0xff,
0x40, 0x95, 0x03, 0xff,
0x31, 0x63, 0xff, 0xff,
0x53, 0x12, 0xff, 0xff,

Carnegie Mellon

System	 Architecture	 Outline	

18	

Internet	

API:	 User	 Code	

Dispatcher	

Job	 Handler	

Aggregator	

Data	 Handler	

Forwarder	

	 Code	 Interpreter	

	 FireFly	 WSN	

PC	

Gateway	 Node	

End	 Node	

WSNs	

…	

Parser:	 nclC	

Receiver	

Data	 Handler	

Carnegie Mellon

Data	 Handler	 FuncCons	 and	 Features	
 FuncConaliCes	

  Byte-‐code	 transfer	
  Data	 transfer	 and	 aggregaCon	
  Radio	 resource	 management	

 Features	
  RouCng	 table	 management	
  Fault-‐tolerant	 packet	 delivery	

  Retransmission	
  Random	 back-‐off	 delay	 between	 responses	

  ApplicaCon	 management	
  Tracking	 applicaCon	 transacCon	
  StarCng	 and	 terminaCng	 applicaCons	

19	

Carnegie Mellon

System	 Architecture	 Outline	

20	

Internet	

API:	 User	 Code	

Dispatcher	

Job	 Handler	

Aggregator	

Data	 Handler	

Forwarder	

	 Code	 Interpreter	

	 FireFly	 WSN	

PC	

Gateway	 Node	

End	 Node	

WSNs	

…	

Parser:	 nclC	

Receiver	

Data	 Handler	

Carnegie Mellon

Code	 Interpreter	
 Rx	 Task	 re-‐arranges	 received	
packets	 based	 on	 sequence	

 RunCme	 pre-‐processes	
symbols	 and	 labels	 in	 the	
stack	

 Interprets	 the	 instrucCons,	
evaluates	 values	 	

 Sends	 the	 response	 value	
back	 to	 the	 gateway	

21	

Rx Task

Byte-Code
Interpreter

Tx Task

nanoCF runtime

Preprocessing Functions

Instruction Execution

Carnegie Mellon

Challenges	 for	 Concurrent	 applicaCons	
 User	 Interface	

  Database	 queries,	 virtual	 machine	 etc..	
 OperaCng	 System	 Support	
 Packets	 through	 mulCple	 applicaCons	 over	 mulC-‐hop	
network	

 Data	 AggregaCon	

 Minimizing	 the	 overhead	
  Frequency	 of	 Processor	 and	 Radio	 On/Off	

  Network	 flooding	
  Seamless	 backend	 handling	

 Tradeoff	 between	 Control	 and	 AbstracCon	

22	

Carnegie Mellon

Task	 and	 Packet	 Scheduling	
 Typical	 Microprocessor	 operaCon	 states:	

23	

Power State Power (mW) Upward Transition
Time

Active 30 mW n/a

Idle 6 mW 6 µs

Sleep 5 µW 5 ms

3

Embedded Real-Time Systems

Power Modes of MicrocontrollersPower Modes of Microcontrollers

Power state Power (mW) Upward Transition
Time

Active 30 mW n/a

Idle 6 mW 6 us

Sleep 5 uW 10 ms

• Power Management: maximize the Sleep-time of processors

– given {Sleep, Idle, Active} modes of operation

Embedded Real-Time Systems

Example Example TasksetTaskset with with RMSRMS

τ1 (1, 10)
τ2 (1, 15)
τ3 (2, 25)

Carnegie Mellon

Rate	 Harmonized	 Scheduling1	

 Pick	 a	 harmonizing	 period	 (<=	 shortest	 period)	
 Release	 tasks	 only	 at	 the	 harmonizing	 interval	

24	

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

Anthony Rowe, Karthik Lakshmanan, Haifeng Zhu, Raj Rajkumar, "Rate-Harmonized Scheduling for Saving
Energy", Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), December 2008.

Carnegie Mellon

TransformaCon	

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

25	

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

Apply	 RHS	 to	
both	 processor	
and	 Radio-‐Usage	

Two-‐Fold	

Carnegie Mellon

Power	 Saving	 in	 Radio	

0 10 20 30 40 50 60 70 80 90 1000.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Maximum Packet Size (Bytes)

N
or

m
al

iz
ed

Po

w
er

 S
av

in
g

R
at

io

3 Applications
5 Applications

26	

Carnegie Mellon

Not-‐So-‐Future	 	 Future-‐Work	
 OpCmize	 mulCple	 applicaCons	 	
 Reduce	 the	 redundancy	 in	 applicaCons	
 ApplicaCons	 centered	 around	 “Sense	 &	 Send”	
 Remove	 the	 double	 work	 of	 sensing	
 Sending	 already	 addressed	 	

 Sample	 	 Light	 sensor	 only	 once	
  Share	 data	 among	 mulCple	 applicaCons	

27	

Two-‐Fold	

Carnegie Mellon

Longest	 Common	 Subsequence	

28	

H
U
M
A
N

C
H
I
M
P
A
N
Z
E
E

H
U
M
A
N

C
H
I
M
P
A
N
Z
E
E

C
H
I
M
P
A
N
Z
E
E

Carnegie Mellon

Merge	 applicaCons	 using	 LCS	

29	

S
y
z
C

C

C

S

T

C

S

C

T

S

S

C

T

Sense

Compute

Transmit App 1 App 2

S
y
z
C

C

C

S

T

C

S

C

T

S

App 1 App 2

T

Anchor
Nodes

TI
M

E

TI
M

E

Carnegie Mellon

BUT	 VIK	 STOPS	 HERE	 	
I	 could	 go	 on	 with	 more	 slides	

Two-‐Fold	

