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Macro-‐programming	  support	   	  
 In-‐network	  programming	  	  

 Why?	  
  Usability	  
  Lack	  of	  Technical	  ExperCse	  with	  non	  CS	  people	  
  Cost	  of	  re-‐program-‐ability	  
  Faster	  deployment	  
  Heterogeneous	  Hardware/SoKware	  

 Consider	  a	  network	  with	  hundreds	  of	  nodes	  
  Few	  minutes	  per	  node	  can	  mean	  hours	  

 More	  “QualitaCve”	  advantages	  

2	  



Carnegie Mellon 

Sensor	  Network	  as	  Infrastructure	  
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Occupancy	  Checking	  and	  Room	  Climate	  
Control	  

 Several	  applicaCons	  on	  same	  sensor	  network	  
 Geographically	  distributed	  sensor	  network	  
 Limited	  flexibility	  and	  usability	  
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Challenges	  for	  Concurrent	  applicaCons	  
 User	  Interface	  

  Database	  queries,	  virtual	  machine	  etc..	  
 OperaCng	  System	  Support	  
 Packets	  through	  mulCple	  applicaCons	  over	  mulC-‐hop	  
network	  

 Data	  AggregaCon	  
 Minimizing	  the	  overhead	  

  Frequency	  of	  Processor	  and	  Radio	  On/Off	  
  Network	  flooding	  
  Seamless	  backend	  handling	  

 Tradeoff	  between	  Control	  and	  AbstracCon	  
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Macro	  Programming	  System	  
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 nanoCL:	  Small	  
Composible	  Language	  
for	  Sensor	  Networks	  

 Abstracts	  away	  from	  
lower-‐level	  details	  

 Supports	  various	  data-‐
types	  and	  library	  
funcCons	  

 Independent	  of	  the	  type	  
of	  sensor	  nodes	  
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System	  Architecture	  
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Control	  and	  Data	  Flow	  
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System	  Architecture	  Outline	  
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sMapReduce	  Programming	  AbstracCon	  
 Natural-‐fit	  to	  sensor	  network	  operaCon	  

  Map	  the	  “funcConality”	  to	  sensor	  node	  
  Gather	  the	  data	  through	  the	  network	  tree	  (Reduce)	  	  

 Inspired	  from	  Google’s	  MapReduce	  

 Key	  Features	  
  Balanced	  abstracCon	  and	  control	  
  Easy	  debugging	  
  Two-‐fold	  operaCon	  
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Simple	  Temperature	  CollecCon	  Example	  
Table 1: List of programming constructs

Construct Details

list_of_nodes data structure containing the

list of nodes and their properties

smap_emit() Data to be returned

by each node

Function to read sensor

get() values into integers,

takes sensor name as argument

set() Function to set a GPIO Pin

clear() Clear a GPIO Pin

toggle() Toggle a GPIO Pin

Table 2: List of operators for selecting participating nodes

from among the list_of_nodes

Operators Details

LEAF. Nodes on the periphery of the network

INNER. All nodes except the leaf nodes

HOP(k). All nodes at kth
hop from the gateway

HAS(t). All nodes that have a t type sensor

BATT(c). All nodes having remaining

battery capacity of atleast c
CONN(n). Nodes having at least n neighbors

network. Code for this application consists of a for loop to

iterate through the list of nodes, an instruction using get()
to read the temperature reading and then an smap_emit()
to send the temperature reading along with the node id to-

wards the gateway.

The Reduce section of the program is used to specify the

aggregation scheme. A separate dedicated section in the

program to perform aggregation provides more freedom and

flexibility to implement data collection algorithms. The user

can assign aggregation responsibilities to different nodes in

the network tree. It makes it easier to overlay complex ag-

gregation algorithms over the tree through higher-level ab-

stractions for node addressing. This two-fold advantage is

made possible by separating the sensing operation from the

data-aggregation in sMap and Reduce sections. Figure 1b

shows an example of a reduce function for calculating the

sum of temperature readings obtained in the sMap section

in Figure 1a. In this example, INNER operator is used to

select non-leaf nodes and the sum of the input temperature

data is calculated over all nodes. Sum of these temperature

readings can be used to calculate a more useful parameter

such as average temperature at the gateway node. It is triv-

ial to compute commutative operations like sum, maximum,

minimum and count. Moreover, as a user can access the

nodes according to their physical location or logical location

in the network tree, more complex aggregations schemes can

be implemented as well.

3.1 A Target Tracking Example
Target tracking is a common application in sensor net-

works and requires considerable coordination between nodes.

We provide an implementation of target tracking using sig-

nal strength of beacons from a target node in order to demon-

strate the advantage of using sMapReduce. The application

logic is split into sMap and Reduce functions as shown in

1 smap( service name , l i s t o f n o d e s , per iod ) {
2 for each node in l i s t o f n o d e s

3 temp value = ge t s (TEMP) ;

4 smap emit ( temp value , node id ) ;

5 end

(a) sMap Function

1 reduce ( data , l i s t o f n o d e s ) {
2 for each node in INNER. l i s t o f n o d e s

3 sum += data . temp value ; //AGGREGATION

4 end

5 return sum ;

6 }

(b) Reduce Function

Figure 1: A simple example for collecting maximum tem-

perature from a wireless sensor network

Figure 3. sMap function reads the Received Signal Strength

Indicator (RSSI) values from received packets as shown in

line 3 in Figure 3a. The reduce function in Figure 3b tri-

angulates the location of the target when an intermediate

node receives information packets from at least three chil-

dren nodes.

In the sMap function each node generates four values:

RSSI, corresponding time stamp, location of target and its

own ID, as shown in line 5 in Figure 3a. The Reduce function

receives these values from sMap, and evaluates an aggrega-

tion at all intermediate nodes. As shown in the example

topology in Figure 2, only node 6 is able to collect three val-

ues required for triangulation of the target node T tracked by

nodes 1, 2 and 3. The Reduce function in the example im-

plements the majority of the application logic because only

an intermediate node can process the RSSI information to

estimate the location of the target. The reduce function also

ascertains temporal correlation of RSSI values from different

nodes by checking whether the all time stamps are lie than

a window of size win (line 6, Figure 3b). It is evident from

this example that sMapReduce performs aggregation close to

the leaf nodes, reducing the communication and computa-

tion overhead near the gateway node. The triangulate()
function in line 8 calculates location of target node based

on RSSI values and coordinates of infrastructure nodes. Its

implementation is omitted for brevity purposes, as it does

not influence the goal or design of our proposed pattern.

Approaches like TinyDB do not capture sensing or topo-

logical modalities, as the aggregation is handled by an auto-

mated query planner. The design of application logic might

be simpler in TinyDB in many cases but sMapReduce allows

a programmer more control with an implicit understanding

of physical and logical location of nodes. More complex

schemes like Regiment do not isolate the functionality from

aggregation explicitly, which can complicate the application

logic with sensing job being undesirably coupled to various

points in the program.

3.2 Mapping Applications for Mobile Nodes
The sociometric badge [17] is an example sensor network

application that targets assisted-living scenarios. The in-

frastructure for such an application is expensive to main-

tain once the nodes have been distributed and deployed.

Adding additional features is likely to be impossible, and

11	  
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OperaCon	  to	  UI	  CorrelaCon	  
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sMap	  and	  Reduce	  planes	  
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the	  network	  	  
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Target	  tracking	  applicaCon	  
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Figure 2: An example topology to demonstrate location
tracking of a target node

the lack of resources on specific nodes restricts the services
that they can offer. The presence of mobile nodes also adds
additional complexity with respect to node reprogramming
and data aggregation. The proposed programming pattern
sMapReduce, provides a flexible and extensible mechanism
to develop such systems, which could consist of both mo-
bile and static sensor nodes. In order to support such sys-
tems, sMapReduce introduces two new aspects: (i) multi-
level mapreduce function support, and (ii) periodic map ex-
ecution. This enables system designers to use sMapReduce
on sensor network systems with mobile nodes. Figure 4a
shows an example system, where a mobile node called Fire-
Fly badge [9], is used to build the above-mentioned assisted
living infrastructure. The FireFly badge could be hosting
two location-based applications: (i) emergency alarm that
needs to be loaded when the user is in a bathroom, and (ii)
a schedule reminder that needs to be loaded when the user
is in a living room. The smap_location function is executed
periodically, and it tracks the location of the FireFly badge
so that smap_location can map the corresponding applica-
tion to the badge. Then, smap_service, the second level
map function, will map schedule_reminder to the badge if
the user is in the living room and emergency_alarm if the
users is in the bathroom. Therefore, depending on the user
location, a different application can be dynamically mapped
on to the mobile node, and this enables programming of
context-sensitive map/reduce operations. This example thus
illustrates a simple scenario where the multi-level mapping
and periodic map execution features of sMapReduce can en-
able its use in networks with mobile nodes, where platforms
such as [16, 11, 12] cannot be easily applied.

3.3 Features
The design of the sMapReduce programming pattern is

based on the principle that typical sensor network operation
consists of two relatively disjoint functions. One associates
a behavior to sensor nodes and other executes data aggrega-
tion over the distributed network. Hence, dividing the user
program in explicit sMap and Reduce sections is a natural-
fit to sensor network operation. We provide below some
features of the pattern to emphasize on the design decisions
behind the sMapReduce.

Two-fold operation Typical sensor network operation con-
sists of programming of the nodes and collection of

1 smap( ta rg e t t r a ck , l i s t o f n o d e s , per iod ) {
2 for each node in l i s t o f n o d e s
3 r s s i v = get (RSSI ) ;
4 t s = get ( time ) ;
5 smap emit ( r s s i v , ts , node id , l o c ) ;
6 end

(a) sMap Function

1 reduce ( data , l i s t o f n o d e s ) {
2 for each node in INNER. l i s t o f n o d e s
3 i f ( data . l o c != NULL)
4 return data . l o c ;
5 else
6 i f (max( t s )−min( t s )<=win
7 && s ize ( data . r s s i v ) >= 3)
8 t r i a n gu l a t e ( r s s i v , l o c ) ;
9 else

10 return data ;
11 end
12 end
13 end
14 }

(b) Reduce Function
Figure 3: A location tracking example using RSSI values
of packets received by infrastructure nodes from a mobile
target. An example topology for this application is provided
in Figure 2

data. These two are handled independently at dif-
ferent layers in the network. Further details of this
operation are provided in Section 4.

Data correlation A sensor network is a distributed sys-
tem where data of interest is the physical environment
itself. Therefore, any computation on data should
be conducted in the close neighborhood of the sensor
node.

Programmer Support Explicit division of programs into
sMap and Reduce sections allow the programmers to
easily isolate the key functions, thus helping in easy
inference and debugging of applications.

Balanced abstraction and control sMapReduce provides
easy to use libraries and abstractions to deploy large
scale applications in addition to the ability to address
individual nodes for fine-grained control to the user.

Expressiveness sMapReduce is a pattern derived from the
operation of a sensor network, and it allows the pro-
grammer to conveniently map behavior of sensing and
aggregation to network structure. The programmer
can leverage subtle optimizations without much com-
plexity in the application logic.

4. SYSTEM DESIGN
As previously stated, a typical operation of a sensor net-

work involves two major components; one handles the pro-
gramming of and coordination among nodes and another,
governs aggregation of data over the multi-hop network tree.
We can conceptualize this two-fold operation as two inde-
pendent planes that we call sMap plane and Reduce plane.
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tracking of a target node

the lack of resources on specific nodes restricts the services
that they can offer. The presence of mobile nodes also adds
additional complexity with respect to node reprogramming
and data aggregation. The proposed programming pattern
sMapReduce, provides a flexible and extensible mechanism
to develop such systems, which could consist of both mo-
bile and static sensor nodes. In order to support such sys-
tems, sMapReduce introduces two new aspects: (i) multi-
level mapreduce function support, and (ii) periodic map ex-
ecution. This enables system designers to use sMapReduce
on sensor network systems with mobile nodes. Figure 4a
shows an example system, where a mobile node called Fire-
Fly badge [9], is used to build the above-mentioned assisted
living infrastructure. The FireFly badge could be hosting
two location-based applications: (i) emergency alarm that
needs to be loaded when the user is in a bathroom, and (ii)
a schedule reminder that needs to be loaded when the user
is in a living room. The smap_location function is executed
periodically, and it tracks the location of the FireFly badge
so that smap_location can map the corresponding applica-
tion to the badge. Then, smap_service, the second level
map function, will map schedule_reminder to the badge if
the user is in the living room and emergency_alarm if the
users is in the bathroom. Therefore, depending on the user
location, a different application can be dynamically mapped
on to the mobile node, and this enables programming of
context-sensitive map/reduce operations. This example thus
illustrates a simple scenario where the multi-level mapping
and periodic map execution features of sMapReduce can en-
able its use in networks with mobile nodes, where platforms
such as [16, 11, 12] cannot be easily applied.

3.3 Features
The design of the sMapReduce programming pattern is

based on the principle that typical sensor network operation
consists of two relatively disjoint functions. One associates
a behavior to sensor nodes and other executes data aggrega-
tion over the distributed network. Hence, dividing the user
program in explicit sMap and Reduce sections is a natural-
fit to sensor network operation. We provide below some
features of the pattern to emphasize on the design decisions
behind the sMapReduce.

Two-fold operation Typical sensor network operation con-
sists of programming of the nodes and collection of

1 smap( ta rg e t t r a ck , l i s t o f n o d e s , per iod ) {
2 for each node in l i s t o f n o d e s
3 r s s i v = get (RSSI ) ;
4 t s = get ( time ) ;
5 smap emit ( r s s i v , ts , node id , l o c ) ;
6 end

(a) sMap Function

1 reduce ( data , l i s t o f n o d e s ) {
2 for each node in INNER. l i s t o f n o d e s
3 i f ( data . l o c != NULL)
4 return data . l o c ;
5 else
6 i f (max( t s )−min( t s )<=win
7 && s ize ( data . r s s i v ) >= 3)
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9 else

10 return data ;
11 end
12 end
13 end
14 }

(b) Reduce Function
Figure 3: A location tracking example using RSSI values
of packets received by infrastructure nodes from a mobile
target. An example topology for this application is provided
in Figure 2

data. These two are handled independently at dif-
ferent layers in the network. Further details of this
operation are provided in Section 4.

Data correlation A sensor network is a distributed sys-
tem where data of interest is the physical environment
itself. Therefore, any computation on data should
be conducted in the close neighborhood of the sensor
node.

Programmer Support Explicit division of programs into
sMap and Reduce sections allow the programmers to
easily isolate the key functions, thus helping in easy
inference and debugging of applications.

Balanced abstraction and control sMapReduce provides
easy to use libraries and abstractions to deploy large
scale applications in addition to the ability to address
individual nodes for fine-grained control to the user.

Expressiveness sMapReduce is a pattern derived from the
operation of a sensor network, and it allows the pro-
grammer to conveniently map behavior of sensing and
aggregation to network structure. The programmer
can leverage subtle optimizations without much com-
plexity in the application logic.

4. SYSTEM DESIGN
As previously stated, a typical operation of a sensor net-

work involves two major components; one handles the pro-
gramming of and coordination among nodes and another,
governs aggregation of data over the multi-hop network tree.
We can conceptualize this two-fold operation as two inde-
pendent planes that we call sMap plane and Reduce plane.
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Write-‐ability	  
 Simple	  C	  like	  syntax	  
 Library	  funcCons	  

  gets()	  for	  accessing	  sensor	  data	  
  ArithmeCc	  operaCons	  
  int/uint	  data	  types	  
  set(), get(), toggle()	  for	  GPIO	  pins	  
  for	  and	  while	  loops	  
  if/else	  constructs	  
  return	  values	  to	  collect	  data	  	  
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Source	  Lines	  of	  Code	  Comparison	  

Application NanoCF Operating System 
Temperature Collection 5 80 

Occupancy Monitoring 20 205 

Target Tracking 20 ~ 300 - 400 
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JOB: 
  dummyservice "1 2 3  
          4 5" 100 MIN 
ENDJOB 
 
SERVICE: 
    dummyservice int8 
int8 
    INIT: 
      int8 aa 
      int8 bb 
      int8 cc 
    ENDINIT 
    aa = gets(TEMP) 
    bb = gets(LIGHT) 
    clt (LED RED) 
    cc = (bb/100) +        
              (aa/100) 
    if(cc > 15) 
 set(LED RED) 
 print(cc) 
    endif 
    wait(100) 
ENDSERVICE 
 

No of Instructions: 
35 
  SECTION INIT 
int8 a (aa) 
int8 b (bb) 
int8 c (cc) 
int16 d  
int16 e 
int16 f 
int16 g 
int16 h 
int16 i 
int16 j 
  ENDINIT 
  SECTION SERVICE 
GETS TEMP aa 
GETS LIGHT bb 
CLR LED RED  
AEQ d 100 
DIV e b d 
AEQ f 100 
DIV g a f 
ADD h e g 
MOV c h 
AEQ i 15 
GT c i 
IF 
GOTO 11  
LABEL 12  
AEQ j 100 
WAIT j  
ENDSERVICE 
REPEAT 0x00 0x64  
LABEL 11  
SET LED RED  
PRINT c  
GOTO 12 

 
 
0x56, 0x58, 0xff, 0xff, 
0x5c, 0x60, 0x61, 0xff, 
0x5c, 0x60, 0x62, 0xff, 
0x5c, 0x60, 0x63, 0xff, 
0x5c, 0x61, 0x64, 0xff, 
0x5c, 0x61, 0x65, 0xff, 
0x5c, 0x61, 0x66, 0xff, 
0x5c, 0x61, 0x67, 0xff, 
0x5c, 0x61, 0x68, 0xff, 
0x5c, 0x61, 0x69, 0xff, 
0x5c, 0x61, 0x6a, 0xff, 
0x59, 0xff, 0xff, 0xff, 
0x56, 0x5a, 0xff, 0xff, 
0x30, 0x61, 0x90, 0x00, 
0x30, 0x62, 0x96, 0xff, 
0x41, 0x95, 0x03, 0xff, 
0x16, 0x64, 0x00, 0x64, 
0x1a, 0x65, 0x62, 0x64, 
0x16, 0x66, 0x00, 0x64, 
0x1a, 0x67, 0x61, 0x66, 
0x0d, 0x68, 0x65, 0x67, 
0x17, 0x63, 0x68, 0xff, 
0x16, 0x69, 0x00, 0x0f, 
0x11, 0xff, 0x63, 0x69, 
0x51, 0xff, 0xff, 0xff, 
0x53, 0x11, 0xff, 0xff, 
0x54, 0x12, 0xff, 0xff, 
0x16, 0x6a, 0x00, 0x64, 
0x44, 0x6a, 0xff, 0xff, 
0x5b, 0xff, 0xff, 0xff, 
0x45, 0xff, 0x00, 0x64, 
0x54, 0x11, 0xff, 0xff, 
0x40, 0x95, 0x03, 0xff, 
0x31, 0x63, 0xff, 0xff, 
0x53, 0x12, 0xff, 0xff, 
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System	  Architecture	  Outline	  
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Gateway	  Node	  
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WSNs	  
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Receiver	  
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Data	  Handler	  FuncCons	  and	  Features	  
 FuncConaliCes	  

  Byte-‐code	  transfer	  
  Data	  transfer	  and	  aggregaCon	  
  Radio	  resource	  management	  

 Features	  
  RouCng	  table	  management	  
  Fault-‐tolerant	  packet	  delivery	  

  Retransmission	  
  Random	  back-‐off	  delay	  between	  responses	  

  ApplicaCon	  management	  
  Tracking	  applicaCon	  transacCon	  
  StarCng	  and	  terminaCng	  applicaCons	  

19	  
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System	  Architecture	  Outline	  
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	  FireFly	   WSN	  

PC	  

Gateway	  Node	  

End	  Node	  

WSNs	  

…	  

Parser:	  nclC	  

Receiver	  

Data	  Handler	  
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Code	  Interpreter	  
 Rx	  Task	  re-‐arranges	  received	  
packets	  based	  on	  sequence	  

 RunCme	  pre-‐processes	  
symbols	  and	  labels	  in	  the	  
stack	  

 Interprets	  the	  instrucCons,	  
evaluates	  values	  	  

 Sends	  the	  response	  value	  
back	  to	  the	  gateway	  

21	  

Rx Task 

Byte-Code 
Interpreter 

Tx Task 

nanoCF runtime 

Preprocessing Functions 

Instruction Execution 
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Challenges	  for	  Concurrent	  applicaCons	  
 User	  Interface	  

  Database	  queries,	  virtual	  machine	  etc..	  
 OperaCng	  System	  Support	  
 Packets	  through	  mulCple	  applicaCons	  over	  mulC-‐hop	  
network	  

 Data	  AggregaCon	  

 Minimizing	  the	  overhead	  
  Frequency	  of	  Processor	  and	  Radio	  On/Off	  

  Network	  flooding	  
  Seamless	  backend	  handling	  

 Tradeoff	  between	  Control	  and	  AbstracCon	  

22	  
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Task	  and	  Packet	  Scheduling	  
 Typical	  Microprocessor	  operaCon	  states:	  

23	  

Power State Power (mW) Upward Transition 
Time 

Active 30 mW n/a 

Idle 6 mW 6 µs 

Sleep 5 µW 5 ms 

3

Embedded Real-Time Systems

Power Modes of MicrocontrollersPower Modes of Microcontrollers

Power state Power (mW) Upward Transition 
Time

Active 30 mW n/a

Idle 6 mW 6 us

Sleep 5 uW 10 ms

• Power Management: maximize the Sleep-time of processors

– given {Sleep, Idle, Active} modes of operation

Embedded Real-Time Systems

Example Example TasksetTaskset with with RMSRMS

τ1   (1, 10) 
τ2   (1, 15) 
τ3   (2, 25) 
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Rate	  Harmonized	  Scheduling1	  

 Pick	  a	  harmonizing	  period	  (<=	  shortest	  period)	  
 Release	  tasks	  only	  at	  the	  harmonizing	  interval	  

24	  

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the 
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

Anthony Rowe, Karthik Lakshmanan, Haifeng Zhu, Raj Rajkumar, "Rate-Harmonized Scheduling for Saving 
Energy", Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), December 2008. 
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TransformaCon	  

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the 
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

25	  

4

Embedded Real-Time Systems

7

RateRate--Harmonizing Scheduling (Harmonizing Scheduling (RHSRHS))

• Pick a rate-harmonizing period (<= shortest period in taskset)

• Tasks when released are eligible to execute only at boundaries of the 
rate-harmonizing period

Embedded Real-Time Systems

TransformationTransformation

Apply	  RHS	  to	  
both	  processor	  
and	  Radio-‐Usage	  

Two-‐Fold	  
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Power	  Saving	  in	  Radio	  
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3 Applications
5 Applications
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Not-‐So-‐Future	  	  Future-‐Work	  
 OpCmize	  mulCple	  applicaCons	  	  
 Reduce	  the	  redundancy	  in	  applicaCons	  
 ApplicaCons	  centered	  around	  “Sense	  &	  Send”	  
 Remove	  the	  double	  work	  of	  sensing	  
 Sending	  already	  addressed	  	  

 Sample	  	  Light	  sensor	  only	  once	  
  Share	  data	  among	  mulCple	  applicaCons	  

27	  

Two-‐Fold	  



Carnegie Mellon 

Longest	  Common	  Subsequence	  
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Merge	  applicaCons	  using	  LCS	  
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BUT	  VIK	  STOPS	  HERE	  	  
I	  could	  go	  on	  with	  more	  slides	  

Two-‐Fold	  


