Assigning Real-Time Tasks on Heterogeneous Multiprocessors with Two Unrelated Types of Processors

Björn Andersson, Gurulingesh Raravi and Konstantinos Bletsas

Real-time scheduling

on a uniprocessor

P

Real-time scheduling Real-time scheduling on a uniprocessor on a multiprocessor

2005

Real-time scheduling Real-time scheduling on a uniprocessor on a multiprocessor

Real-time scheduling on a heterogeneous multiprocessor

2005
2011

Real-time scheduling Real-time scheduling on a uniprocessor on a multiprocessor

Real-time scheduling on a heterogeneous multiprocessor

time

Scheduling related challenges for heterogeneous multiprocessors in real-time systems:
-Precedence constraints
-Sharing of low-level hardware resources (caches, interconnection networks);
-The execution time of a task depends on which processor it executes on.

Real-time scheduling Real-time scheduling on a uniprocessor on a multiprocessor

Real-time scheduling on a heterogeneous multiprocessor

time

Scheduling related challenges for heterogeneous multiprocessors in real-time systems:
-Precedence constraints
-Sharing of low-level hardware resources (caches, interconnection networks);
-The execution time of a task depends on which processor it executes on.

Focus of this talk.

Different views on a heterogeneous multiprocessors:

Different views on a heterogeneous multiprocessors:

How many different types of processors does the computer system have?
-Two types of processors

- More that two types of processors

How many different types of processors does the computer system have?
-Two types of processors

- More that two types of processors

Considered in this talk.

Different assumptions about task migration:
-A task can migrate to any processor;
-A task can migrate but only between processors of the same type;
-A task cannot migrate.

Different assumptions about task migration:
-A task can migrate to any processor;
-A task can migrate but only between processors of the same type;
-A task cannot migrate.

Considered in this talk.

Different task models
-Dependent tasks: An arrival of a task is dependent on an event related to another task.

- Independent tasks: An arrival of a task is independent of events related to other tasks.
+ periodic tasks
* implicit deadline
* explicit deadline
+ sporadic tasks
* implicit deadline
* explicit deadline

Different task models

-Dependent tasks: An arrival of a task is dependent on an event related to another task.

- Independent tasks: An arrival of a task is independent of events related to other tasks.
+ periodic tasks
* implicit deadline
* explicit deadline
+ sporadic tasks
* implicit deadline
* expliciffdeadline

Considered in this talk.

Different task models

- Dependent tasks: An arrival of a task is dependent on an event related to another task.
- Independent tasks: An arrival of a task is independent of events related to other tasks.
+ periodic tasks
* implicit deadline
* explicit deadline
+ sporadic tasks
* implicit deadline
* explicit deadline

Different scheduling algorithms:

- RM
- EDF

Different task models

- Dependent tasks: An arrival of a task is dependent on an event related to another task.
- Independent tasks: An arrival of a task is independent of events related to other tasks.
+ periodic tasks
* implicit deadline
* explicit deadline
+ sporadic tasks
* implicit deadline
* explicit deadline

Different scheduling algorithms:

- RM
- EDF

Model

- $\quad P^{1}$ denotes the set of all processors of type-1.
- $\quad P^{2}$ denotes the set of all processors of type-2.
- τ denotes a set of tasks $\tau=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$;
- A task τ_{i} assigned to a processor of type-1 has utilization $U_{i}{ }^{1}$.
- A task τ_{i} assigned to a processor of type-2 has utilization U_{i}.

Problem statement

Assign tasks to processors so that each processor is utilized to at most 100%.

Example of a problem instance

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\}
$$

	Processor type-1	Processo
τ_{1}	$U_{1}{ }^{1}=0.90$	$U_{1}^{2}=0.40$
τ_{2}	$U_{2}{ }^{1}=0.90$	$U_{2}^{2}=0.40$
τ_{3}	$U_{3}{ }^{1}=0.40$	$U_{3}{ }^{2}=0.80$
τ_{4}	$U_{4}{ }^{1}=0.40$	$U_{4}{ }^{2}=0.80$

Example of a problem instance

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\}
$$

	Processor type-1	Processor type-2	
τ_{1}	$U_{1}^{1}=0.90$	$U_{1}^{2}=0.40$	U_{3}
τ_{2}	$U_{2}^{1}=0.90$	$U_{2}^{2}=0.40$	τ_{4}
τ_{3}	$U_{3}^{1}=0.40$	$U_{3}^{2}=0.80$	
τ_{4}	$U_{4}^{1}=0.40$	$U_{4}^{2}=0.80$	

We can do the assignment like this.

Let us try First-Fit

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

Processor type-1 Processor type-2

τ_{1}	$U_{1}{ }^{1}=0.90$	$U_{1}^{2}=0.40$
τ_{2}	$U_{2}{ }^{1}=0.90$	$U_{2}^{2}=0.40$
τ_{3}	$U_{3}{ }^{1}=0.40$	$U_{3}^{2}=0.80$
τ_{4}	$U_{4}^{1}=0.40$	$U_{4}^{2}=0.80$

Let us try First-Fit

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

Processor type-1 Processor type-2

τ_{1}	$U_{1}^{1}=0.90$	$U_{1}^{2}=0.40$
τ_{2}	$U_{2}{ }^{1}=0.90$	$U_{2}^{2}=0.40$
τ_{3}	$U_{3}^{1}=0.40$	$U_{3}^{2}=0.80$
τ_{4}	$U_{4}^{1}=0.40$	$U_{4}^{2}=0.80$

Let us try First-Fit

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

Processor type-1 Processor type-2

τ_{1}	$U_{1}^{1}=0.90$	$U_{1}{ }^{2}=0.40$
τ_{2}	$U_{2}^{1}=0.90$	$U_{2}^{2}=0.40$
τ_{3}	$U_{3}{ }^{1}=0.40$	$U_{3}^{2}=0.80$
τ_{4}	$U_{4}^{1}=0.40$	$U_{4}^{2}=0.80$

Let us try First-Fit

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

Processor type-1 Processor type-2

τ_{1}	$U_{1}^{1}=0.90$	$U_{1}^{2}=0.40$
τ_{2}	$U_{2}^{1}=0.90$	$U_{2}^{2}=0.40$
τ_{3}	$U_{3}^{1}=0.40$	$U_{3}^{2}=0.80$
τ_{4}	$U_{4}^{1}=0.40$	$U_{4}^{2}=0.80$

Let us try First-Fit

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

Processor type-1 Processor type-2

τ_{1}	$U_{1}^{1}=0.90$	$U_{1}^{2}=0.40$
τ_{2}	$U_{2}^{1}=0.90$	$U_{2}^{2}=0.40$
τ_{3}	$U_{3}^{1}=0.40$	$U_{3}^{2}=0.80$
τ_{4}	$U_{4}^{1}=0.40$	$U_{4}^{2}=0.80$

There is no processor on which τ_{4} can be assigned.

Let us try First-Fit

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

Processor type-1 Processor type-2

τ_{1}	$U_{1}{ }^{1}=0.90$	$U_{1}{ }^{2}=0.40$
τ_{2}	$U_{2}{ }^{1}=0.90$	$U_{2}{ }^{2}=0.40$
τ_{3}	$U_{3}{ }^{1}=0.40$	$U_{3}^{2}=0.80$
τ_{4}	$U_{4}^{1}=0.40$	$U_{4}{ }^{2}=0.80$

First-Fit fails on this task set.

Let us try First-Fit

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

First-Fit has inifinite competitive ratio on heterogeneous multiprocessor with two types (shown in the paper) ${ }_{26}$

Design Ideas

Idea1: Try to assign a task on the processor where its utilization is smaller.

Idea 2: if $U_{i}^{1} \leq$ THRESHOLD and $U_{i}^{2}>$ THRESHOLD then
assign task τ_{i} to processor of type-1.

Design Ideas

Idea1: Try to assign a task on the processor where its utilization is smaller.

Idea 2: if $U_{i}^{1} \leq$ THRESHOLD and $U_{i}^{2}>$ THRESHOLD then assign task τ_{i} to processor of type-1.

Partition the task set

$\tau^{1}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}{ }^{1} \leq U_{i}^{2}\right\}$
$\tau^{2}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}^{1}>U_{i}^{2}\right\}$

Design Ideas

Partition the task set

Idea1: Try to assign a task on the processor where its utilization is smaller.

Idea 2: if $U_{i}^{1} \leq$ THRESHOLD and $U_{i}^{2}>$ THRESHOLD then assign task τ_{i} to processor of type-1.
$\tau^{1}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}{ }^{1} \leq U_{i}^{2}\right\}$
$\tau^{2}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}^{1}>U_{i}^{2}\right\}$
$H 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2}>1 / 2\right\}$
$F 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2} \leq 1 / 2\right\}$

Design Ideas

Partition the task set

Idea1: Try to assign a task on the processor where its utilization is smaller.

Idea 2: if $U_{i}^{1} \leq$ THRESHOLD and $U_{i}^{2}>$ THRESHOLD then assign task τ_{i} to processor of type-1.
$\tau^{1}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}{ }^{1} \leq U_{i}^{2}\right\}$
$\tau^{2}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}^{1}>U_{i}^{2}\right\}$
$H 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2}>1 / 2\right\}$
$F 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2} \leq 1 / 2\right\}$
$H 2=\left\{\tau_{i} \propto \tau^{2}\right.$ such that $\left.U_{i}^{1}>1 / 2\right\}$
$F 2=\left\{\tau_{i} \propto \tau^{2}\right.$ such that $\left.U_{i}^{1} \leq 1 / 2\right\}$

Algorithm Outline Partition the task set

1. Form the sets H1,H2,F1,F2
2. first-fit($\left.\mathrm{H} 1, P^{1}\right)$
3. first-fit $\left(H 2, P^{2}\right)$
4. first-fit $\left(F 1, P^{1}\right)$
5. first-fit($\left.F 2, P^{2}\right)$
$\tau^{1}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}^{1} \leq U_{i}^{2}\right\}$
$\tau^{2}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}^{1}>U_{i}^{2}\right\}$
$H 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2}>1 / 2\right\}$
$F 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2} \leq 1 / 2\right\}$
$H 2=\left\{\tau_{i} \propto \tau^{2}\right.$ such that $\left.U_{i}^{1}>1 / 2\right\}$
$F 2=\left\{\tau_{i} \propto \tau^{2}\right.$ such that $\left.U_{i}^{1} \leq 1 / 2\right\}$

Algorithm

Partition the task set

1. Form sets $H 1, H 2, F 1, F 2$
2. $\forall p: \mathrm{U}[\mathrm{p}]:=0$
3. $\forall p: \tau[\mathrm{p}]:=\emptyset$
4. if first-fit $\left(H 1, P^{1}\right) \neq H 1$ then declare FAILURE
5. if first-fit $\left(H 2, P^{2}\right) \neq H 2$ then declare FAILURE
6. $\quad F 11:=$ first-fit $\left(F 1, P^{1}\right)$
7. $F 22:=$ first-fit $\left(F 2, P^{2}\right)$
8. if $(F 11=F 1) \wedge(F 22=F 2)$ then declare SUCCESS
9. if $(F 11 \neq F 1) \wedge(F 22 \neq F 2)$ then declare FAILURE
10. if $(F 11 \neq F 1) \wedge(F 22=F 2)$ then
11. $F 12:=F 1 \backslash F 11$
12. if first-fit $\left(F 12, P^{2}\right)=F 12$ then
13. declare SUCCESS
14. else
15. declare FAILURE end
16. end
17. if $(F 11=F 1) \wedge(F 22 \neq F 2)$ then
18. $F 21:=F 2 \backslash F 22$
19. if first-fit $\left(F 21, P^{1}\right)=F 21$ then
20. declare SUCCESS
21. else
22. declare FAILURE
23. end
$\tau^{1}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}{ }^{1} \leq U_{i}^{2}\right\}$
$\tau^{2}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}^{1}>U_{i}^{2}\right\}$
$H 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2}>1 / 2\right\}$ $F 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2} \leq 1 / 2\right\}$ $H 2=\left\{\tau_{i} \propto \tau^{2}\right.$ such that $\left.U_{i}^{1}>1 / 2\right\}$ $F 2=\left\{\tau_{i} \propto \tau^{2}\right.$ such that $\left.U_{i}^{1} \leq 1 / 2\right\}$

FF-3C

Partition the task set

1. Form sets $H 1, H 2, F 1, F 2$
2. $\forall p: \mathrm{U}[\mathrm{p}]:=0$
3. $\forall p: \tau[\mathrm{p}]:=\emptyset$
4. if first-fit $\left(H 1, P^{1}\right) \neq H 1$ then declare FAILURE
5. if first-fit $\left(H 2, P^{2}\right) \neq H 2$ then declare FAILURE
6. $\quad F 11:=$ first-fit $\left(F 1, P^{1}\right)$
7. $F 22:=$ first-fit $\left(F 2, P^{2}\right)$
8. if $(F 11=F 1) \wedge(F 22=F 2)$ then declare SUCCESS
9. if $(F 11 \neq F 1) \wedge(F 22 \neq F 2)$ then declare FAILURE
10. if $(F 11 \neq F 1) \wedge(F 22=F 2)$ then
11. $F 12:=F 1 \backslash F 11$
12. if first-fit $\left(F 12, P^{2}\right)=F 12$ then
13. declare SUCCESS
14. else
15. declare FAILURE end
16. end
17. if $(F 11=F 1) \wedge(F 22 \neq F 2)$ then
18. $F 21:=F 2 \backslash F 22$
19. if first-fit $\left(F 21, P^{1}\right)=F 21$ then
20. declare SUCCESS
21. else
22. declare FAILURE
23. end
$\tau^{1}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}^{1} \leq U_{i}^{2}\right\}$
$\tau^{2}=\left\{\tau_{i} \propto \tau\right.$ such that $\left.U_{i}^{1}>U_{i}^{2}\right\}$
$H 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2}>1 / 2\right\}$ $F 1=\left\{\tau_{i} \propto \tau^{1}\right.$ such that $\left.U_{i}^{2} \leq 1 / 2\right\}$ $H 2=\left\{\tau_{i} \propto \tau^{2}\right.$ such that $\left.U_{i}^{1}>1 / 2\right\}$ $F 2=\left\{\tau_{i} \propto \tau^{2}\right.$ such that $\left.U_{i}^{1} \leq 1 / 2\right\}$

FF-3C

1. Form sets $H 1, H 2, F 1, F 2$
2. $\forall p: \mathrm{U}[\mathrm{p}]:=0$
3. $\forall p: \tau[\mathrm{p}]:=\emptyset$
4. if first-fit $\left(H 1, P^{1}\right) \neq H 1$ then declare FAILURE
5. if first-fit $\left(H 2, P^{2}\right) \neq H 2$ then declare FAILURE
6. $\quad F 11:=$ first-fit $\left(F 1, P^{1}\right)$
7. $F 22:=$ first-fit $\left(F 2, P^{2}\right)$
8. if $(F 11=F 1) \wedge(F 22=F 2)$ then declare SUCCESS
9. if $(F 11 \neq F 1) \wedge(F 22 \neq F 2)$ then declare FAILURE
10. if $(F 11 \neq F 1) \wedge(F 22=F 2)$ then
11. $F 12:=F 1 \backslash F 11$
12. if first-fit $\left(F 12, P^{2}\right)=F 12$ then
13. declare SUCCESS
14. else
15. declare FAILURE
16. end
17. end
18. if $(F 11=F 1) \wedge(F 22 \neq F 2)$ then
19. $F 21:=F 2 \backslash F 22$
20. if first-fit $\left(F 21, P^{1}\right)=F 21$ then
21. declare SUCCESS
22. else
23. declare FAILURE
24. end

25 . end

1. function first-fit(ts : set of tasks; ps : set of processors) return set of tasks
2. assigned_tasks := \emptyset
```
If ps consists of type-1 (type-2) processors, then order
    ts by decreasing }\mp@subsup{U}{i}{2}/\mp@subsup{U}{i}{1}\mathrm{ (resp., incr. }\mp@subsup{U}{i}{1}/\mp@subsup{U}{i}{2}\mathrm{ ).
    Use any order for processors ps, but maintain it
    during the execution of the function first-fit.
    \tau
    p:= first processor in ps
    Let k}\mathrm{ denote the type of processor p (either 1 or 2)
    if U[p]+U\mp@subsup{U}{i}{k}\leq1 then
        U[p]:= U[p]+U U
        \tau[p]:= \tau[p]\cup{\mp@subsup{\tau}{i}{}}
        assigned_tasks := assigned_tasks \cup{\mp@subsup{\tau}{i}{}}
        if remaining tasks exist in ts then
            \mp@subsup{\tau}{i}{}}:=\mathrm{ next task in ts
            go to line 5.
        else
            return assigned_tasks
        end if
    else
        if remaining processors exist in ps then
            p:= next processor in ps
            go to line 6.
        else
            return assigned_tasks
        end if
    end if
```


Applying FF-3C on an example

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

	Processor type-1	Processor type-2
τ_{1}	$U_{1}{ }^{1}=0.90$	$U_{1}{ }^{2}=0.40$
τ_{2}	$U_{2}^{1}=0.90$	$U_{2}^{2}=0.40$
τ_{3}	$U_{3}^{1}=0.40$	$U_{3}^{2}=0.80$
τ_{4}	$U_{4}^{1}=0.40$	$U_{4}{ }^{2}=0.80$

FF-3C

3. $\forall p: \tau[\mathrm{p}]:=\emptyset$
4. if first-fit $\left(H 1, P^{1}\right) \neq H 1$ then declare FAILURE 5. if first-fit $\left(H 2, P^{2}\right) \neq H 2$ then de\&lare FAILURE
6. $\quad F 11:=$ first-fit $\left(F 1, P^{1}\right)$
7. $\quad F 22:=$ first-fit $\left(F 2, P^{2}\right)$
8. if $(F 11=F 1) \wedge(F 22=F 2)$ then dec are SUCCESS
9. if $(F 11 \neq F 1) \wedge(F 22 \neq F 2)$ then declare FAILURE
10. if $(F 11 \neq F 1) \wedge(F 22=F 2)$ then
11. $F 12:=F 1 \backslash F 11$
12. if first-fit $\left(F 12, P^{2}\right)=F 12$ then
13. declare SUCCESS
14. else
15. declare FAILURE
16. end
17. end
18. if $(F 11=F 1) \wedge(F 22 \neq F 2)$ then
19. $F 21:=F 2 \backslash F 22$

1. function first-fit(ts : set of tasks; ps : set of processors) return set of tasks

$$
\text { assigned_tasks := } \quad \emptyset
$$

3. If ps consists of type-1 (type-2) processors, then order ts by decreasing U_{i}^{2} / U_{i}^{1} (resp., incr. U_{i}^{1} / U_{i}^{2}). Use any order for processors ps , but maintain it during the execution of the function first-fit.
$\tau_{i}:=$ first task in ts
$p:=$ first processor in ps
Let k denote the type of processor p (either 1 or 2)
if $\mathrm{U}[\mathrm{p}]+U_{i}^{k} \leq 1$ then
$\mathrm{U}[\mathrm{p}]:=\mathrm{U}[\mathrm{p}]+U_{i}^{k}$
$\tau[\mathrm{p}]:=\tau[\mathrm{p}] \cup\left\{\tau_{i}\right\}$
assigned_tasks $:=$ assigned_tasks $\cup\left\{\tau_{i}\right\}$
if remaining tasks exist in ts then
$\tau_{i}:=$ next task in ts
go to line 5.
else
return assigned_tasks
end if
else
if remaining processors exist in ps then
$p:=$ next processor in ps
go to line 6.

Let us execute this line.

Applying FF-3C on an example

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

	Processor type-1	Processo
τ_{1}	$U_{1}{ }^{1}=0.90$	$U_{1}^{2}=0.40$
τ_{2}	$U_{2}{ }^{1}=0.90$	$U_{2}{ }^{2}=0.40$
τ_{3}	$U_{3}{ }^{1}=0.40$	$U_{3}{ }^{2}=0.80$
τ_{4}	$U_{4}{ }^{1}=0.40$	$U_{4}{ }^{2}=0.80$

$$
\begin{aligned}
& \tau^{l}=\left\{\tau_{3}, \tau_{4}\right\} \quad H 1=\left\{\tau_{3}, \tau_{4}\right\} \quad F 1=\{ \} \\
& \tau^{2}=\left\{\tau_{1}, \tau_{2}\right\} \quad H 2=\left\{\tau_{1}, \tau_{2}\right\} \quad F 2=\{ \}
\end{aligned}
$$

FF-3C

1. Form sets $H 1, H 2, F 1, F 2$
2. $\forall p: \mathrm{U}[\mathrm{p}]:=0$
3. $\forall p: \tau[\mathrm{p}]:=\emptyset$
4. if first-fit $\left(H 1, P^{1}\right) \neq H 1$ then declare FAILURE
5. if first-fit $\left(H 2, P^{2}\right) \neq H 2$ then declare FAILURE
6. $\quad F 11:=$ first-fit $\left(F 1, P^{1}\right)$
7. $\quad F 22:=$ first-fit $\left(F 2, P^{2}\right)$
8. if $(F 11=F 1) \wedge(F 22=F 2)$ then declare SUCCESS
9. if $(F 11 \neq F 1) \wedge(F 22 \neq F 2)$ then declare FAILURE
10. if $(F 11 \neq F 1) \wedge(F 22=F 2)$ then
11. $F 12:=F 1 \backslash F 11$
12. if first-fit $\left(F 12, P^{2}\right)=F 12$ then
13. declare SUCCESS
14. else
15. declare FAILURE
16. end
17. end
18. if $(F 11=F 1) \wedge(F 22 \neq F 2)$ then
19. $F 21:=F 2 \backslash F 22$
20. function first-fit(ts : set of tasks; ps : set of processors) return set of tasks

$$
\text { assigned_tasks }:=\emptyset
$$

3. If ps consists of type-1 (type-2) processors, then order ts by decreasing U_{i}^{2} / U_{i}^{1} (resp., incr. U_{i}^{1} / U_{i}^{2}). Use any order for processors ps, but maintain it during the execution of the function first-fit.
$\tau_{i}:=$ first task in ts
$p:=$ first processor in ps
Let k denote the type of processor p (either 1 or 2)
if $\mathrm{U}[\mathrm{p}]+U_{i}^{k} \leq 1$ then
$\mathrm{U}[\mathrm{p}]:=\mathrm{U}[\mathrm{p}]+U_{i}^{k}$
$\tau[\mathrm{p}]:=\tau[\mathrm{p}] \cup\left\{\tau_{i}\right\}$
assigned_tasks $:=$ assigned_tasks $\cup\left\{\tau_{i}\right\}$
if remaining tasks exist in ts then
$\tau_{i}:=$ next task in ts
go to line 5.
else
return assigned_tasks
end if
else
if remaining processors exist in ps then
$p:=$ next processor in ps
go to line 6.

Let us execute this line.

Applying FF-3C on an example

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

τ_{1}	$U_{1}^{1}=0.90$	$U_{1}^{2}=0.40$
τ_{2}	$U_{2}^{1}=0.90$	$U_{2}^{2}=0.40$
τ_{3}	$U_{3}^{1}=0.40$	$U_{3}^{2}=0.80$
τ_{4}	$U_{4}^{1}=0.40$	$U_{4}^{2}=0.80$

$$
\begin{aligned}
& \tau^{l}=\left\{\tau_{3}, \tau_{4}\right\} \quad H 1=\left\{\tau_{3}, \tau_{4}\right\} F 1=\{ \} \\
& \tau^{2}=\left\{\tau_{1}, \tau_{2}\right\} \quad H 2=\left\{\tau_{1}, \tau_{2}\right\} \quad F 2=\{ \}
\end{aligned}
$$

FF-3C

1. Form sets $H 1, H 2, F 1, F 2$
2. $\forall p: \mathrm{U}[\mathrm{p}]:=0$
3. $\forall p: \tau[\mathrm{p}]:=\emptyset$
4. if first-fit $\left(H 1, P^{1}\right) \neq H 1$ then declare FAILURE 5. if first-fit $\left(H 2, P^{2}\right) \neq H 2$,hen declare FAILURE
5. $F 11:=$ first-fit $\left(F 1, P^{1}\right)$
6. $\quad F 22:=$ first-fit $\left(F 2, P^{2}\right)$
7. if $(F 11=F 1) \wedge(F 22=F 2)$ then declare SUCCESS
8. if $(F 11 \neq F 1) \wedge(F 22 \neq F 2)$ then declare FAILURE
9. if $(F 11 \neq F 1) \wedge(F 22=F 2)$ then
10. $F 12:=F 1 \backslash F 11$
11. if first-fit $\left(F 12, P^{2}\right)=F 12$ then
12. declare SUCCESS
13. else
14. declare FAILURE
15. end
16. end
17. if $(F 11=F 1) \wedge(F 22 \neq F 2)$ then
18. $F 21:=F 2 \backslash F 22$
19. function first-fit(ts : set of tasks; ps : set of processors) return set of tasks

$$
\text { assigned_tasks }:=\emptyset
$$

3. If ps consists of type-1 (type-2) processors, then order ts by decreasing U_{i}^{2} / U_{i}^{1} (resp., incr. U_{i}^{1} / U_{i}^{2}). Use any order for processors ps , but maintain it during the execution of the function first-fit.
$\tau_{i}:=$ first task in ts
$p:=$ first processor in ps
Let k denote the type of processor p (either 1 or 2)
if $\mathrm{U}[\mathrm{p}]+U_{i}^{k} \leq 1$ then
$\mathrm{U}[\mathrm{p}]:=\mathrm{U}[\mathrm{p}]+U_{i}^{k}$
$\tau[\mathrm{p}]:=\tau[\mathrm{p}] \cup\left\{\tau_{i}\right\}$
assigned_tasks $:=$ assigned_tasks $\cup\left\{\tau_{i}\right\}$
if remaining tasks exist in ts then
$\tau_{i}:=$ next task in ts
go to line 5.
else
return assigned_tasks
end if
else
if remaining processors exist in ps then
$p:=$ next processor in ps
go to line 6.

Let us execute this line.

Applying FF-3C on an example

$$
\tau=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} P^{1}=\left\{\mathrm{P}_{1}\right\}, P^{2}=\left\{\mathrm{P}_{2}, \mathrm{P}_{3}\right\} .
$$

	Processor type-1	Processor type-2	
τ_{1}	$U_{1}^{1}=0.90$	$U_{1}^{2}=0.40$	
τ_{2}	$U_{2}^{1}=0.90$	$U_{2}^{2}=0.40$	
τ_{3}	$U_{3}^{1}=0.40$	$U_{3}^{2}=0.80$	$U_{4}^{2}=0.80$
τ_{4}	$U_{4}^{1}=0.40$	$H 1=\left\{\tau_{3}, \tau_{4}\right\}$	$F 1=\{ \}$
$\tau^{1}=\left\{\tau_{3}, \tau_{4}\right\}$	$H 2=\left\{\tau_{1}, \tau_{2}\right\}$	$F 2=\{ \}$	

FF-3C

1. Form sets $H 1, H 2, F 1, F 2$
2. $\forall p: \mathrm{U}[\mathrm{p}]:=0$
3. $\forall p: \tau[\mathrm{p}]:=\emptyset$
4. if first-fit $\left(H 1, P^{1}\right) \neq H 1$ then declare FAILURE 5. if first-fit $\left(H 2, P^{2}\right) \neq H 2$ then declare FAILURE
5. $F 22:=$ first-fit $\left(F 2, P^{2}\right)$
6. if $(F 11=F 1) \wedge(F 22=F \mathcal{F})$ then declare SUCCESS
7. if $(F 11 \neq F 1) \wedge(F 22 \neq F 2)$ then declare FAILURE
8. if $(F 11 \neq F 1) \wedge(F 22=F 2)$ then
9. $F 12:=F 1 \backslash F 11$
10. function first-fit(ts : set of tasks; ps : set of processors) return set of tasks
11. assigned_tasks : $=\emptyset$
12. If ps consists of type-1 (type-2) processors, then order ts by decreasing U_{i}^{2} / U_{i}^{1} (resp., incr. U_{i}^{1} / U_{i}^{2}). Use any order for processors ps, but maintain it during the execution of the function first-fit.
$\tau_{i}:=$ first task in ts
13. $\quad p:=$ first processor in ps
14. Let k denote the type of processor p (either 1 or 2)
15. if $\mathrm{U}[\mathrm{p}]+U_{i}^{k} \leq 1$ then
16. $\mathrm{U}[\mathrm{p}]:=\mathrm{U}[\mathrm{p}]+U_{i}^{k}$
17. if first-fit $\left(F 12, P^{2}\right)=F 12$ then declare SUCCESS else
declare FAILURE end
end
18. if $(F 11=F 1) \wedge(F 22 \neq F 2)$ then
19. $F 21:=F 2 \backslash F 22$
20.
21.
22.

$\tau[\mathrm{p}]:=\tau[\mathrm{p}] \cup\left\{\tau_{i}\right\}$
assigned_tasks $:=$ assigned_tasks $\cup\left\{\tau_{i}\right\}$
if remaining tasks exist in ts then
$\tau_{i}:=$ next task in ts
go to line 5 .
else
return assigned_tasks
16.
17.
18.
19.
20.

$$
\begin{aligned}
& \text { Since F1= } \varnothing \text { and } F 2=\varnothing \text {, nothing happens when these lines } \\
& \text { are executed. }
\end{aligned}
$$

FF-3C

1. Form sets $H 1, H 2, F 1, F 2$
2. $\forall p: \mathrm{U}[\mathrm{p}]:=0$
3. $\forall p: \tau[\mathrm{p}]:=\emptyset$
4. if first-fit $\left(H 1, P^{1}\right) \neq H 1$ then declare FAILURE
5. if first-fit $\left(H 2, P^{2}\right) \neq H 2$ then declare FAILURE
6. $\quad F 11:=$ first-fit $\left(F 1, P^{1}\right)$
7. $F 22:=$ first-fit $\left(F 2 . P^{2}\right)$
8. if $(F 11=F 1) \wedge(F 22=F 2)$ then declare SUCCESS
9. if $(F 11 \neq F 1) \wedge(F 22 \neq F 2)$ then declare FAILURE
10. if $(F 11 \neq F 1) \wedge(F 22=F 2)$ then
11. $F 12:=F 1 \backslash F 11$
12. if first-fit $\left(F 12, P^{2}\right)=F 12$ then
13. declare SUCCESS
14. else
15. declare FAILURE
16. end
17. end
18. if $(F 11=F 1) \wedge(F 22 \neq F 2)$ then
19. $F 21:=F 2 \backslash F 22$
20.

The algorithm terminates here.

1. function first-fit(ts : set of tasks; ps : set of processors) return set of tasks
2. assigned_tasks : $=\emptyset$
3. If ps consists of type-1 (type-2) processors, then order ts by decreasing U_{i}^{2} / U_{i}^{1} (resp., incr. U_{i}^{1} / U_{i}^{2}). Use any order for processors ps, but maintain it during the execution of the function first-fit.
$\tau_{i}:=$ first task in ts
4. $p:=$ first processor in ps
5. Let k denote the type of processor p (either 1 or 2)
6. if $\mathrm{U}[\mathrm{p}]+U_{i}^{k} \leq 1$ then $\mathrm{U}[\mathrm{p}]:=\mathrm{U}[\mathrm{p}]+U_{i}^{k}$
$\tau[\mathrm{p}]:=\tau[\mathrm{p}] \cup\left\{\tau_{i}\right\}$
assigned_tasks $:=$ assigned_tasks $\cup\left\{\tau_{i}\right\}$
if remaining tasks exist in ts then
$\tau_{i}:=$ next task in ts go to line 5 .
else
return assigned_tasks
end if
else
if remaining processors exist in ps then
7. $p:=$ kext processor in ps
8. go to line 6.

Theorem 1: The speed competitive ratio of $\mathrm{FF}-3 \mathrm{C}$ is at most two.

A task set T is feasible on a computing platform $\pi \rightarrow$
FF-3C schedules t on the computing platform 2* π

Algorithm FF-4C and FF-4C-NTC

 and FF-4C-COMB:like FF-3C but with improved average-case performance

Related Work

- Formulate the problem as Integer Linear Program
- Minimize U subject to:

$$
\begin{array}{lll}
\text { 1. } & \sum_{j=1}{ }^{m} x_{i, j}=1, & (i=1,2, \ldots, n) \\
\text { 2. } & \sum_{i=1}^{n}\left(x_{i, j}{ }^{*} u_{i, j}\right)<=U, & (j=1,2, \ldots, m) \\
\text { 3. } & x_{i, j}=0 \text { or } x_{i, j}=1 & (i=1,2, \ldots, n) ;(j=1,2, \ldots, m)
\end{array}
$$

Related Work

- Formulate the problem as Integer Linear Program
- Minimize U subject to:

$$
\begin{array}{lll}
\text { 1. } & \sum_{j=1}{ }^{m}{ }^{n} x_{i, j}=1, & (i=1,2, \ldots, n) \\
\text { 2. } & \sum_{i=1}^{n}\left(x_{i, j}{ }^{*} u_{i, j}\right)<=U, & (j=1,2, \ldots, m) \\
\text { 3. } & x_{i, j}=0 \text { or } x_{i, j}=1 & (i=1,2, \ldots, n) ;(j=1,2, \ldots, m)
\end{array}
$$

- NP-complete: cannot be solved in polynomial time

Related Work

- Formulate the problem as Integer Linear Program
- Minimize U subject to:

$$
\begin{array}{lll}
\text { 1. } & \sum_{j=1}{ }^{m} x_{i, j}=1, & (i=1,2, \ldots, n) \\
\text { 2. } & \sum_{i=1}^{n}\left(x_{i, j}{ }^{*} u_{i, j}\right)<=U, & (j=1,2, \ldots, m) \\
\text { 3. } & x_{i, j}=0 \text { or } x_{i, j}=1 & (i=1,2, \ldots, n) ;(j=1,2, \ldots, m)
\end{array}
$$

- NP-complete: cannot be solved in polynomial time
- Relax it to Linear Programming

$$
\text { 3. } 0<=x_{i, j}<=1
$$

$$
(\mathrm{i}=1,2, \ldots, n) ;(\mathrm{j}=1,2, \ldots, m)
$$

- Solvable in polynomial time
- At most 'm' fractional tasks

Related Work

- Formulate the problem as Integer Linear Program
- Minimize U subject to:

$$
\begin{array}{lll}
\text { 1. } & \sum_{j=1}{ }^{m} x_{i, j}=1, & (i=1,2, \ldots, n) \\
\text { 2. } & \sum_{i=1}^{n}\left(x_{i, j}{ }^{*} u_{i, j}\right)<=U, & (j=1,2, \ldots, m) \\
\text { 3. } & x_{i, j}=0 \text { or } x_{i, j}=1 & (i=1,2, \ldots, n) ;(j=1,2, \ldots, m)
\end{array}
$$

- NP-complete: cannot be solved in polynomial time
- Relax it to Linear Programming

$$
\text { 3. } 0<=x_{i, j}<=1 \quad(i=1,2, \ldots, n) ;(j=1,2, \ldots, m)
$$

- Solvable in polynomial time
- At most 'm' fractional tasks
- Assign the fractional tasks integrally
- Exhaustive enumeration (RTAS04)
- Bi-partite matching (ICPP04)

Average-case performance evaluation

Comparison of three algorithms (Y-Axis: $\log _{10}$ scale)

Necessary Multiplication Factor

Average-case performance evaluation

	New Algorithms				Old Algorithms							
	Measured avg exec time				Measured avg exec time incl CPLEX overhead				Measured avg exec time incl CPLEX overhead - avg CPLEX overhead			
Multiplication factor	FF-3C	FF-4C	$\begin{aligned} & \text { FF-4C } \\ & \text {-NTC } \end{aligned}$	$\begin{aligned} & \text { FF-4C } \\ & -\mathrm{COMB} \end{aligned}$	SKB-RTAS	$\begin{aligned} & \text { SKB-RTAS } \\ & \text {-IMP } \end{aligned}$	SKB-ICPP	$\begin{aligned} & \text { SKB-ICPP } \\ & \text {-IMP } \end{aligned}$	SKB-RTAS	$\begin{aligned} & \text { SKB-RTAS } \\ & \text {-IMP } \end{aligned}$	SKB-ICPP	$\begin{aligned} & \text { SKB-ICPP } \\ & \text {-IMP } \end{aligned}$
1.00	0.85	0.76	0.93	1.08	32481.61	32545.39	394715.80	369120.15	14324.45	14388.23	164603.39	161727.00
1.25	0.52	0.52	0.51	0.53	31657.49	31572.03	393758.65	325045.97	13500.33	13414.87	163646.24	149405.05
1.50	0.49	0.49	0.45	0.48	31751.65	31729.69	381899.86	297359.20	13594.49	13572.52	161185.38	140149.17
1.75	0.47	0.46	0.42	0.46	31744.69	31582.66	337182.98	290084.67	13587.52	13425.49	151049.23	137254.26
2.00	0.49	0.48	0.40	0.48	31736.95	31768.30	291714.93	287719.46	13579.79	13611.13	137972.10	136531.41

Table 1. Comparison of average execution time of algorithms (in microseconds)

Conclusions

+ Bin-packing is possible, with good performance, on heterogeneous multiprocessors with two types of processors.
+ Such bin-packing performs well.

Conclusions

+ Bin-packing is possible, with good performance, on heterogeneous multiprocessors with two types of processors.
+ Such bin-packing performs well:
* FF-3C has speed competitive ratio at most two;
* FF-4C-COMB has speed competitive ratio at most two;
* FF-4C-COMB requires on average processors of lower speed than the previously best algorithm;
* FF-4C-COMB runs more than 10000 times faster than previously best known algorithm.

Recent extensions to the work

- Theorem 2: The speed competitive ratio of FF-3C is at most $1 /(1-a)$
- 'a' is the maximum utilization of a task
- FF-4C and FF-4C-NTC and FF-4C-COMB
- like FF-3C but with improved average-case performance

Thank You!

