Towards developing
multi-agent systems
Iin Ada

Javi Palanca
<jpalanca@dsic.upv.es>
GTI-IA

mailto:jpalanca@dsic.upv.es

* Agents and multi-agent systems

* SPADE

* ADA application interface for SPADE
* Conclusions

 Future Work

Where do agents come from?

» Software Objects

* Artificial Intelligence
 Distributed Systems
* Psychology, society

* Intentional systems

Where do agents come from?

* Inter-Object Messages
* Inheritance

» Software Objects N

* Independence

* Artificial Intelligence - «xnowledge

* Reasoning
* Learning
* Focus: sensors+deliberation+actuation

 Distributed Systems

* Distributed data
* Distributed processes

C Psychology, society - Cognitivism - Networks

* Behaviorism « Interoperability

* Intentional systems - autonomous

What is an Agent?

* Permanent process
* Independent

* Autonomous

* Intelligent
 Flexible

« Reactive, Proactive and Social

Multi-Agent Systems

* Interaction between some similar or
heterogeneous agents

* No global control
* Decentralized data

» Individual points-of-view (o) S

¢ . ®

Agent Applications

A

* E-Commerce * Huge and distributed

» Traffic control problems
* Open and dynamic

* Intelligent manufacture .
environments

* Information Agents : :
ormation Ag - Flexible, inter-operable,

» Co-operation networks efficient, robust, trust...

» Software Engineering

FIPA

« Foundation for Intelligent Physical Agents

* |EEE Computer Society standards organization

* Promotes agent-based technology and the
Interoperability of its standards with other

technologies
www.fipa.org .

Agent Platforms

| FIPA Agent Platform

|
|
|
FIPA00023-60 :---—> ACL |
| |
| I
| Agent Directory |
FIPA00023 T Management Facilitator |
| System ACL |
|
: APl | ACL
FIPA00067 -t Message Transport Services HI 0P
I e
|
|

h--_------------_-------

SPADE

Smart Python multi-Agent Development Environment

» Developed using Python SESSEEE |
* Covers the FIPA standard
 Allows different OS and platforms
* Based on the JABBER protocol

* Allows different programming languages
using the Jabber protocol

SPADE and Jabber

* SPADE is based on the JABBER protocol
 Jabber is an Instant Messaging protocol to
communicate people

* Jabber enables to exchange messages,
presence and other structured information in

close to real-time

* Jabber is a set of XML protocols and
technologies

*SPADE uses Jabber to communicate agents!

SPADE: Platform Model

* Based on the Jabber server (XML Router)
* Links all the platform components (ACC,
agents, AMS...) one with each other.

. " * Every SPADE

Agent ™. SPADE AMS o component is an agent
S [[

!-.Téiﬁ?‘*l P “‘fﬂ « Agents use the ACC

| F TS (XML Routen (Agent Communication
\ / Channel) to route

| interface([Fy] |/ | |) -
Agent ": XMPP SIMBAMTP | HTTP MTP messages Inside the
| N - - platform

SPADE: Communication Model

 Jabber gives SPADE some extra features:

 Presence Notification
 Multi-user Conference

- my Contact List ™y {~ chat roo

Presence Notification Multi-user Conference

SPADE: Agent Model

* The Agent model is composed by:

A connection mechanism to the
platform (a TCP/IP connection to
the Jabber server)

* A message dispatcher

* A set of different behaviors.

 SPADE agents do reach their goals
by running deliberative and reactive O
behaviors. E

ADA AP]

* The interface that connects agents with SPADE is
XML

* This allows to develop agents in any programming
language (that could work with sockets and XML)

* SPADE provides ONLY a python API to develop
agents. (and its ok)

* And there is no other supported programming
language...

ADA AP]

* The interface that connects agents with SPADE is
XML

* This allows to develop agents in any programming
language (that could work with sockets and XML)

* SPADE provides ONLY a python API to develop
agents. (and its ok)

* And there is no other supported programming
language...
except for

ADA

ADA API
. _ Agent @Lﬁiﬁﬁ
* Our aim is to (python)™
N =

develop agents s \

: . i
using ADA which |Age"t}& N
will be able to (python) \:* SPADE PLATFORM

Conrr\\ect to a Agent ,/ (python)
python agent (ADA) a
platform (SPADE) Vi - 4

Agent |
(ADA)

6

ADA AP]

» Package structure

]
Spade
| | | 1 1 1] 1 1
Acl_Message | | Aid Basic_Fipa_Date_Time Agent Behaviour | | Message_Receiver | | Envelope | | Acl_Template
Auxiliar Packages Main Agent Agent Model Auxiliar Packages

Package Packages

ADA AP]

package Spade.Aids is
type Aid is private;
function Get Name

function Get Addresses
function Get Resolvers

procedure Set Name
procedure Add Address
procedure Add Resolver

end Spade.Aids;

— —

— e —

From: Aid) return Aid Name;
From: Aid) return List Addresses;
From: Aid) return List Resolvers;

To: in out Aid; Name: in Aid Name
To: in out Aid; Address: in Address
To: in out Aid; Resolver: in Resolver

ADA AP]

*Types Hierarchy

Spade

Message_ Receiver

T

Behaviour ‘ Basic_Agent

A A

Aid Basic_Fipa_Date_Time Envelope Acl_Template | | Acl_Message

Periodic_ Behaviour

T

Time_Out Behaviour

One_Shot_Behaviour FS5M Behaviour Platform_Agent Agent

ADA AP]

package Spade.Agents is
type Basic_Agent is new Message Receiver with private;

function Get Aid (From: Basic Agent Class) return Aid;
procedure Start (What: in out Basic Agent'Class);
procedure Take Down (What: in out Basic Agent'Class);
procedure Setup (What: in out Basic Agent'Class);
procedure Kill (What: in out Basic_Agent'Class);
procedure Add Behavior (To: in out Basic Agent'Class;

Behav: in Behavior'Class;
Template: in Acl Template);
function Search Agent (From: Basic_Agent'Class;
Template: Ams Agent Description)
return List Ams Agent Description;
procedure Register Service(From: in Basic Agent'Class;
Service: in Df Agent Description);
procedure Send Message (From: in out Basic Agent'Class;
Env: in Envelope;
Message: in Acl Message);
type Agent is new Basic Agent with private;
type Platform Agent is new Basic Agent with private;

end Spade.Agents;

An Agent: Agent;

Behavior One: Periodic Behavior;
Behavior Two: One Shot Behavior;
A Template: Acl Template;

Set Default Behavior (To => An Agent, Behav => Behavior One);

Add Template (To => Behavior Two, Template => A Template);
Add Behavior (To => An Agent, Behav => Behavior Two);

Start (What => An Agent);

Conclusions and Future Work

* A middleware that allows the development of
intelligent agents using Ada has been developed.

* This middleware focuses on creating Ada agents
that are compatible with the SPADE agent platform.

* It allows bringing the advantages of Ada to the
agent realm and vice-versa.

* As Future Work we will test both implementations
for performance and scalability.

Towards developing
multi-agent systems
Iin Ada

Javi Palanca
<jpalanca@dsic.upv.es>
GTI-IA

mailto:jpalanca@dsic.upv.es

